www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Nullstellenbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Nullstellenbestimmung
Nullstellenbestimmung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mi 08.09.2010
Autor: Domee

Aufgabe
Bestimmen Sie die Nullstellen

2x²+10 = 9x

Hallo zu der o.g. Aufgabe habe ich folgende Rechnung mit der p-q Formel aufgestellt.

2x² +10 = 9x     /-9x
2x² -9x +10      / /2
x² - 4,5 + 5

4/2 +- Wurzel (-4,5/2) -5
4/2 +-              0,25

x1 = 2,25
x2 = 1,25

ist das so korrekt?

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 08.09.2010
Autor: M.Rex

Hallo
> Bestimmen Sie die Nullstellen
>  
> 2x²+10 = 9x
>  Hallo zu der o.g. Aufgabe habe ich folgende Rechnung mit
> der p-q Formel aufgestellt.
>  
> 2x² +10 = 9x     /-9x
>  2x² -9x +10      / /2
>  [mm] x^{2}-4,5\green{x}+5\red{=0} [/mm]

Bis hier ist alles korrekt, ausser, dass die =0 am Ende der letzten Zeile fehlen.


>
> 4/2 +- Wurzel (-4,5/2) -5
>  4/2 +-              0,25

Das passt so micht mehr. [mm] -4,5=-\bruch{9}{2}, [/mm] also [mm] -\bruch{p}{2}=\bruch{9}{4} [/mm] und [mm] q=5=\bruch{80}{16} [/mm]

Damit ergibt sich:

[mm] x_{1;2}=\bruch{9}{4}\pm\wurzel{\bruch{81}{16}-\bruch{80}{16}} [/mm]
[mm] =\bruch{9}{4}\pm\wurzel{\bruch{1}{16}} [/mm]
[mm] =\ldots [/mm]

Marius


Bezug
                
Bezug
Nullstellenbestimmung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:25 Mi 08.09.2010
Autor: Domee

Aufgabe
8 - x² - 7

Hallo nochmal,

wie sieht das bei der Aufgabe aus?

Ist die 8 das p und die - 7 das q?

Bezug
                        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Mi 08.09.2010
Autor: Disap

Hallo.

> 8 - x² - 7
>  Hallo nochmal,
>  
> wie sieht das bei der Aufgabe aus?
>
> Ist die 8 das p und die - 7 das q?

Nein!
Was hält dich davon ab, die 8 und die -7 zusammenzufassen?

Also hast du

[mm] -x^2 [/mm] +1 = 0

Das kannst du jetzt direkt auflösen, rechne -1 auf beiden Seiten

[mm] -x^2 [/mm] = -1

Multipliziere mit minus 1

[mm] x^2 [/mm] = 1

Und nun Wurzel ziehen

[mm] $x_{1,2} [/mm] = [mm] \sqrt{1}$ [/mm]

Damit ist [mm] $x_1 [/mm] = 1$ und [mm] $x_2 [/mm] = -1$

Beides sind Lösungen. In deinem Fall wäre p = 0.

VG
Disap


Bezug
                                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 08.09.2010
Autor: abakus


> Hallo.
>  
> > 8 - x² - 7
>  >  Hallo nochmal,
>  >  
> > wie sieht das bei der Aufgabe aus?
> >
> > Ist die 8 das p und die - 7 das q?
>
> Nein!
>  Was hält dich davon ab, die 8 und die -7
> zusammenzufassen?
>  
> Also hast du
>  
> [mm]-x^2[/mm] +1 = 0
>  
> Das kannst du jetzt direkt auflösen, rechne -1 auf beiden
> Seiten
>  
> [mm]-x^2[/mm] = -1
>  
> Multipliziere mit minus 1
>  
> [mm]x^2[/mm] = 1
>  
> Und nun Wurzel ziehen
>  
> [mm]x_{1,2} = \sqrt{1}[/mm]

Aua.
Das klingt ja so, als hätte [mm] \wurzel{1} [/mm] zwei verschiedene Werte.
Richtig ist:
[mm] x_1=\wurzel{1}=1 [/mm]
[mm] x_2=-\wurzel{1}=-1 [/mm]
Gruß Abakus

>  
> Damit ist [mm]x_1 = 1[/mm] und [mm]x_2 = -1[/mm]
>  
> Beides sind Lösungen. In deinem Fall wäre p = 0.
>  
> VG
>  Disap
>  


Bezug
                                        
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:28 Do 09.09.2010
Autor: Disap

Hallo Abakus!

>  >  
> > [mm]x_{1,2} = \sqrt{1}[/mm]
>  Aua.
>  Das klingt ja so, als hätte [mm]\wurzel{1}[/mm] zwei verschiedene
> Werte.
>  Richtig ist:
>  [mm]x_1=\wurzel{1}=1[/mm]
>  [mm]x_2=-\wurzel{1}=-1[/mm]
>  Gruß Abakus

Du hast natürlich Recht, danke für den Hinweis.

Grüße Disap


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]