www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNullstellenbestimmung einer Fu
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Nullstellenbestimmung einer Fu
Nullstellenbestimmung einer Fu < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung einer Fu: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:41 Di 12.02.2013
Autor: mathefille

Aufgabe 1
Bestimme die Nullstelle der folgenden Funktion:

f(x)= [mm] x^3+x^2-7x-3 [/mm]

Aufgabe 2
Nullstellenbestimmung der Funktion:

f(x)= [mm] x^3-12x-16 [/mm]

Aufgabe 3
Finde die Nullstellen der Funktion:

[mm] x^3-12x^2+21x+98 [/mm]

Hi ihr lieben,
ich bekomme diese Augfaben nicht ganz gelöst. Vielleicht findet ihr ja meine Fehler.

Bei Aufgabe 1: f(x)= [mm] x^3+x^2-7x-3 [/mm] finde ich die erste Nullstelle nicht.
Ich habe als Kandidaten für x nach Betrachtung des absoluten Gliedes:
+-1; +-3 und habe alle eingesetzt:

f(1)= [mm] 1^3+1^2-7 [/mm] * [mm] \cdot \* [/mm] 1-3 =-9
f(-1)= [mm] (-1)^3+(-1)^2-7 [/mm] * [mm] \cdot \* [/mm] (-1)-3 = 2
f(3)= [mm] 3^3+3^2-7 [/mm] * [mm] \cdot \* [/mm] 3-3 = 12
f(-3)= [mm] (-3)^3+(-3)^2-7 [/mm] * [mm] \cdot \* [/mm] (-3)-3 =-18
Ich finde hier die erste Nullstelle irgendwie nicht.

Bei Aufgabe 2: f(x)= [mm] x^3-12x-16 [/mm]
Da habe ich als erste Nullstelle: -2
Dann habe ich die -2 mit in den Teiler gesetzt:

[mm] (x^3-12x-16) [/mm] : (x+2)= [mm] x^2+14x-28 [/mm]
[mm] -(x^3-2x^2) [/mm]
___________
          [mm] 14x^2-16 [/mm]
       [mm] -(14x^2+28x [/mm]
______________
                   -28x-16
                 -(-28x-56)

Weiter komm ich nicht.
Und bei Aufgabe 3 habe ich auch wieder -2 als Nullstelle.

[mm] (x^3-12x^2+21x+98) [/mm] : (x+2) [mm] =x^2+14x-28 [/mm]
[mm] -(x^3+2x^2) [/mm]
__________
          [mm] 14x^2+21x [/mm]
       [mm] -(14x^2+28x) [/mm]
_______________
                   -28x+21
                -(-28x-56)
_________________
                         77+98

Ja, da komme ich auch iwi nicht bis zum Schluss.
Vielleicht findet ja jemand von euch meine Fehler.
Liebe Grüße mathefille

        
Bezug
Nullstellenbestimmung einer Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Di 12.02.2013
Autor: schachuzipus

Hallo mathefille,


> Bestimme die Nullstelle der folgenden Funktion:
>  
> f(x)= [mm]x^3+x^2-7x-3[/mm]
>  Nullstellenbestimmung der Funktion:
>  
> f(x)= [mm]x^3-12x-16[/mm]
>  Finde die Nullstellen der Funktion:
>  
> [mm]x^3-12x^2+21x+98[/mm]
>  Hi ihr lieben,
>  ich bekomme diese Augfaben nicht ganz gelöst. Vielleicht
> findet ihr ja meine Fehler.
>  
> Bei Aufgabe 1: f(x)= [mm]x^3+x^2-7x-3[/mm] finde ich die erste
> Nullstelle nicht.
>  Ich habe als Kandidaten für x nach Betrachtung des
> absoluten Gliedes:
>  +-1; +-3 und habe alle eingesetzt:
>  
> f(1)= [mm]1^3+1^2-7[/mm] * [mm]\cdot \*[/mm] 1-3 =-9
>  f(-1)= [mm](-1)^3+(-1)^2-7[/mm] * [mm]\cdot \*[/mm] (-1)-3 = 2
>  f(3)= [mm]3^3+3^2-7[/mm] * [mm]\cdot \*[/mm] 3-3 = 12
>  f(-3)= [mm](-3)^3+(-3)^2-7[/mm] * [mm]\cdot \*[/mm] (-3)-3 =-18

Na, das Letzte rechne nochmal nach. Ich komme auf [mm]f(-3)=0[/mm]

>  Ich finde hier die erste Nullstelle irgendwie nicht.
>  
> Bei Aufgabe 2: f(x)= [mm]x^3-12x-16[/mm]
>  Da habe ich als erste Nullstelle: -2 [ok]
>  Dann habe ich die -2 mit in den Teiler gesetzt:
>  
> [mm](x^3-12x-16)[/mm] : (x+2)= [mm]x^2+14x-28[/mm]
>  [mm]-(x^3-2x^2)[/mm]

Nana, da muss doch [mm]-(x^3\red + \ 2x^2)[/mm] stehen, es ist doch [mm](x+2)\cdot{}x^2=x^3+2x^2[/mm]

>  ___________
>            [mm]14x^2-16[/mm]
>         [mm]-(14x^2+28x[/mm]
>  ______________
>                     -28x-16
>                   -(-28x-56)
>  
> Weiter komm ich nicht.
>  Und bei Aufgabe 3 habe ich auch wieder -2 als Nullstelle. [ok]
>  
> [mm](x^3-12x^2+21x+98)[/mm] : (x+2) [mm]=x^2+14x-28[/mm]
>  [mm]-(x^3+2x^2)[/mm]
>  __________
>            [mm]14x^2+21x[/mm] [notok]

Minusklammern sind nicht dein Ding ;-)

Es ist [mm]x^3-12x^2-(x^3+2x^2)=x^3-12x^2-x^3-2x^2=-14x^2[/mm]

Musst du nochmal rechnen ...


>         [mm]-(14x^2+28x)[/mm]
>  _______________
>                     -28x+21



>                  -(-28x-56)
>  _________________
>                           77+98
>  
> Ja, da komme ich auch iwi nicht bis zum Schluss.
>  Vielleicht findet ja jemand von euch meine Fehler.
>  Liebe Grüße mathefille

Gruß

schachuzipus


Bezug
                
Bezug
Nullstellenbestimmung einer Fu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 20.02.2013
Autor: mathefille

Danke dir :D. Ich versuchs oft 3mal nach zu rechnen, aber Vorzeichenfehler sind häufige Fehler, also nochmal  Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]