www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNullstellenratenbei Hornschema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Nullstellenratenbei Hornschema
Nullstellenratenbei Hornschema < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenratenbei Hornschema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Sa 24.11.2007
Autor: gruenschnabel

Aufgabe
hornersh1.JPG

hi ich habe gerade die aufgabe gerechnet und weiss nicht ob meine Rechenwege jetzt richtig waren!!

Also erstmal habe ich vom Polynom alle möglichen NSTn  in einer Zahlenmenge angegeben.

[mm] \{+-\bruch{1}{120},+-\bruch{1}{26},+-\bruch{1}{25},+-\bruch{1}{2}\} [/mm]

sind das alle möglichen NSTn fürs erste? oder gibt es da noch mehr?


Habe dann angefangen übers Hornerschema zu prüfen ob es sich um ein NST handelt..

und bin  bei [mm] x=\bruch{1}{2} [/mm] fündig geworden...

und raus kann der neue term..

P(x)= [mm] (240x^{3}+68x^{2}-16x-4)(x-\bruch{1}{2}) [/mm]

dann habe ich wieder neue möglcihe NSTn gesucht und kam auf

[mm] \{+-\bruch{1}{60},+-\bruch{1}{17},+-\bruch{1}{4}\} [/mm]

dann wieder Hornerschema...

und bei [mm] x=\bruch{1}{4} [/mm] eine NST..

neuer Term...

[mm] (240x^{2}+128x-16)(x-\bruch{1}{2})(x-\bruch{1}{4}) [/mm]


dann habe ich noch den teil [mm] (240x^{2}+128x-16) [/mm] versucht über die pq-Formel zu lösen  ... aber da kamen komische dezimalzahlen raus...


außerdem bin ich garnicht wie in den Lösungshinweisen auf die Nullstelle [mm] x=-\bruch{1}{5} [/mm]
gestoßen und wurde etwas misstrauisch ob mein Lösungsweg überhaupt richtig ist?


hofffentlich kann mir jemand bei dieser Übungsaufgabe helfen... danke..

lg

gruenschnabel

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Nullstellenratenbei Hornschema: Tipp Nr 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Sa 24.11.2007
Autor: kirstenS

Hi, mein erster Tipp ist leider abgestürzt.

Also noch mal:

> hornersh1.JPG
>  hi ich habe gerade die aufgabe gerechnet und weiss nicht
> ob meine Rechenwege jetzt richtig waren!!
>  
> Also erstmal habe ich vom Polynom alle möglichen NSTn  in
> einer Zahlenmenge angegeben.
>
> [mm]\{+-\bruch{1}{120},+-\bruch{1}{26},+-\bruch{1}{25},+-\bruch{1}{2}\}[/mm]
>  
> sind das alle möglichen NSTn fürs erste? oder gibt es da
> noch mehr?
>  
>

Das sind nicht die Nullstellen , sondern die Kehrwerte der Koeffizienten.
Teile doch ert mal das Polynom durch 2 , dann werden die Zahlen handlicher.
(Ändern sich dadurch die Nullstellen?)

Ein Polynom vom Grade 4 hat höchstens 4 Nullstellen. Dieses hier hat 4 verschiedene, aber das sieht man noch nicht.




> Habe dann angefangen übers Hornerschema zu prüfen ob es
> sich um ein NST handelt..
>  
> und bin  bei [mm]x=\bruch{1}{2}[/mm] fündig geworden...
>  

Richtig! Die erste gefunden!

> und raus kann der neue term..
>  
> P(x)= [mm](240x^{3}+68x^{2}-16x-4)(x-\bruch{1}{2})[/mm]

Den Term hast Du wahrscheinlich durch Polynomdivision erhalten?
Ist Richtig.

>  
> dann habe ich wieder neue möglcihe NSTn gesucht und kam
> auf
>  
> [mm]\{+-\bruch{1}{60},+-\bruch{1}{17},+-\bruch{1}{4}\}[/mm]
>  

Von denen stimmt schon wieder nur eine : [mm] \bruch{1}{4} [/mm]
Warum hast Du eigentlich immer +/- da stehen ?


> dann wieder Hornerschema...
>  
> und bei [mm]x=\bruch{1}{4}[/mm] eine NST..
>  
> neuer Term...


>  
> [mm](240x^{2}+128x-16)(x-\bruch{1}{2})(x-\bruch{1}{4})[/mm]
>  
>

Ob der richtig ist weiß ich nicht, habe leider keine Zeit mehr. Rechne die Polynomdivision lieber noch mal nach.

> dann habe ich noch den teil [mm](240x^{2}+128x-16)[/mm] versucht
> über die pq-Formel zu lösen  ... aber da kamen komische
> dezimalzahlen raus...
>
>
> außerdem bin ich garnicht wie in den Lösungshinweisen auf
> die Nullstelle [mm]x=-\bruch{1}{5}[/mm]
> gestoßen und wurde etwas misstrauisch ob mein Lösungsweg
> überhaupt richtig ist?
>  

[mm] \bruch{1}{5} [/mm] ist jedenfalls eine NST; die anderen sind ähnlich einfach.

>
> hofffentlich kann mir jemand bei dieser Übungsaufgabe
> helfen... danke..

gern geschehen kirstenS

>  
> lg
>  
> gruenschnabel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]