www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNullteiler <=> Eigenwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Nullteiler <=> Eigenwert
Nullteiler <=> Eigenwert < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullteiler <=> Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Di 30.10.2007
Autor: Jana85

Hallo liebe Forumuser,

ich habe ein gewaltiges Problem mit dieser Aufgabe:

----------------------------
Vorgabe: K Körper; R = [mm] M^{nxn}(K) [/mm] Ring
a) Behauptung: A [mm] \in [/mm] R Nullteiler [mm] \gdw [/mm] 0 Eigenwert von A ist
b) Behauptung: [mm] R^{x} [/mm] = R [mm] \backslash [/mm] N, wobei N die Menge der Nullteiler von R bezeichnet.
----------------------------

Also bei Aufgabe a) hab ich keine Ahnung wie ich da dran gehen soll, bei Aufgabe b) hab ich zumindest schon mal die eine Inklusion, nur die Rückrichtung macht mich zu schaffen!

Ich hoffe wenigstens die Inklusion ist richtig:

[mm] \subseteq [/mm]

x [mm] \in R^{x} \Rightarrow [/mm] ex. y [mm] \in [/mm] R : [mm] xy=E_{n}=yx \Rightarrow [/mm] ex. kein 0 [mm] \not= [/mm] B [mm] \in [/mm] R: xB=0, da y mit links multipliiert ergibt B=0!

so ich hoffe ihr könnt mir bei den 2 Teilaufgaben helfen, ich verzweifle schon :-(

vielen dank, ich zähl auf euch :-) und viele liebe grüße

Eure Jana

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullteiler <=> Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 30.10.2007
Autor: angela.h.b.


> Hallo liebe Forumuser,
>  
> ich habe ein gewaltiges Problem mit dieser Aufgabe:
>  
> ----------------------------
>  Vorgabe: K Körper; R = [mm]M^{nxn}(K)[/mm] Ring
>  a) Behauptung: A [mm]\in[/mm] R Nullteiler [mm]\gdw[/mm] 0 Eigenwert von A
> ist
>  b) Behauptung: [mm]R^{x}[/mm] = R [mm]\backslash[/mm] N, wobei N die Menge
> der Nullteiler von R bezeichnet.
>  ----------------------------

Hallo,

zu a)

"==>"

Sei A Nullteiler, d. A [mm] \not=0 [/mm] und es gibt ein [mm] B\not=0 [/mm] mit AB=0

==> 0=det(AB)=det(A)det(B)

==> detA=0 oder detB=0

Wenn die Determinante von A =0 ist, ist [mm] KernA\not=0 [/mm]  ==> 0 ist Eigenwert.


Überlege Dir, ob det A=0 sein kann.

"<=="

Wenn 0 Eigenwert von A ist, ist [mm] kernA\not=0. [/mm]

Finde eine Matrix [mm] B\not=0 [/mm] mit Bild B=Kern A.  Dann ist AB=0.

zu b)
Was Du hast, sieht richtig aus, wenn ich es auch etws anders aufgeschrieben habe.

Für die andere Richtung ist zu zeigen, daß R \ N [mm] \subseteq R^x, [/mm] d.h.   [mm] A\in [/mm] R \ N ==> A invertierbar.

Mir fiele es leichter, die Kontrapos. zu zeigen, also A nicht invertierbar ==> [mm] A\in [/mm] N. Überlegungen dazu kommen in a) ja vor.

Gruß v. Angela


Bezug
                
Bezug
Nullteiler <=> Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Di 30.10.2007
Autor: Jana85

Hallo Angela, VIELEN VIELEN dank, das hilft mir schon mal sehr viel weiter, jetzt wird mir das alles auch mal klarer :-)

Nur eins verstehe ich noch immer nicht, wieso wird unbedingt det von A = 0 bei Aufgabe a)? Es kann doch auch sein, dass det von B = 0 und dann weiß man nichts über die det A, was uns nicht weiter bringt! An dieser stelle haperts noch, alles andere werde ich hinbekommen und habe ich auch verstanden (denke ich ;-) )!

Vielen dank nochmals

Lg

Jana

Bezug
                        
Bezug
Nullteiler <=> Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 30.10.2007
Autor: angela.h.b.


> Nur eins verstehe ich noch immer nicht, wieso wird
> unbedingt det von A = 0 bei Aufgabe a)? Es kann doch auch
> sein, dass det von B = 0 und dann weiß man nichts über die
> det A, was uns nicht weiter bringt!

Hallo,

wenn die die Determinante [mm] \not=0 [/mm] ist, ist A invertierbar, und was hieraus aus AB=0 folgt, hast Du bei b) ja schon selbst herausgefunden.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]