www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenO-Notation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algorithmen und Datenstrukturen" - O-Notation
O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 14.02.2009
Autor: bonanza

Aufgabe
Ermitteln Sie die Komplexität von Bubblesort in der O-Notation:

void bubbleSort(int numbers[], int array_size)
{
  int i, j, temp;

  for (i = (array_size - 1); i >= 0; i--)
  {
    for (j = 1; j <= i; j++)
    {
      if (numbers[j-1] > numbers[j])
      {
        temp = numbers[j-1];
        numbers[j-1] = numbers[j];
        numbers[j] = temp;
      }
    }
  }
}

Hi,

ich habe eine eher generelle Frage zur Laufzeitanalyse von Funktionen. Undzwar ist mir nicht wirklich klar, wie die Laufzeiten der inneren und äußeren Schleifen zu einander stehen.

ich weiß, dass die äußere Schleifen N-1 Iterationen hat, und die innere Schleife zuerst N-1, dann N-2, N-3, ... Iterationen und die Laufzeit der If-Verzweigung 3 Operationen hat und damit O(1) entspricht. Aber wie muss ich die jetzt zusammen in verbindung setzen um die GEsamtlaufzeit zu erhalten?

Muss ich die Iterationen der äußeren mit denen der inneren multiplizieren?
(N-1)*(N*(N-1)/2+3)

oder werden die "nur" addiert ?
(N-1)+(N*(N-1)/2+3)

Eine kleiner Erläuterung wäre sehr hilfreich :)

danke schonmal im voraus!

        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Sa 14.02.2009
Autor: Karl_Pech

Hallo bonanza,


Im Worst-Case (z.B. beim Feld 3,2,1) ist die if-Abfrage bei jedem Durchlauf der inneren for-Schleife erfüllt. Dann führt die innere Schleife genau [mm]i\![/mm] Schritte aus, da [mm]j=1,\dotsc,i\![/mm]. Im Fall [mm]i = 0\![/mm] wird nur der innere Schleifenkopf ausgeführt, wofür wir einfach mal den Verbrauch einer Zeiteinheit annehmen. Die if-Abfrage und die 3 Befehle im if-Körper sollen jetzt mal insg. 4 Zeiteinheiten verbrauchen. Dann hätte man also insg. array_size-1 Schritte, wo die innere for-Schleife jeweils i-mal ausgeführt wird und einen array_size'ten Schritt, wo nur der innere Schleifenkopf ausgeführt wird. Die Anzahl Schritte insg. ist damit:


[mm]1+\sum_{i=1}^{\operatorname{array\_size}-1}{\sum_{j=1}^i{4}}[/mm]


Diese verschachtelte Summe mußt du jetzt von innen nach außen auflösen (z.B. mit den Formeln von Gauss) und danach schauen, welche Laufzeit sich durch die O-Notation ergibt.



Viele Grüße
Karl




Bezug
                
Bezug
O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Sa 14.02.2009
Autor: bonanza

Aufgabe
Geben Sie mit Hilfe der O-Notation die Laufzeiten der beiden Funktionen an:

int Pow1(int n)
{
if (n > 0) {
return (2*Pow1(n-1));
}
else {
return 1;
}
}

//-----------

int Pow2(int n)
{
if (n > 0) {
return (Pow2(n-1) + Pow2(n-1));
}
else {
return 1;
}
}

Danke für deine Antwort!

Wären das dann
[mm] 2*(Arraysize)^2-Arraysize+1 [/mm] = [mm] O(Arraysize^2) [/mm] ?


Ich habe jetzt direkt noch eine Frage... Wie geht bei bei der Analyse rekursiver Funktionen vor ?

Ich hätte jetzt gesagt, dass die Funktion "Pow1"
1 + 1*n schritte macht und dann eine Laufzeit von O(n) hätte.

bei Funktion "Pow2" bin ich mir wiederrum nicht sicher ob es O(2n) = O(n) oder [mm] O(n^2) [/mm] ist.

Wäre auch hier für eine Erläuterung wieder dankbar ;)


Bezug
                        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 So 15.02.2009
Autor: VornameName

Hallo bonanza,

> Geben Sie mit Hilfe der O-Notation die Laufzeiten der
> beiden Funktionen an:
>  
> int Pow1(int n)
>  {
>  if (n > 0) {

>  return (2*Pow1(n-1));
>  }
>  else {
>  return 1;
>  }
>  }
>  
> //-----------
>  
> int Pow2(int n)
>  {
>  if (n > 0) {

>  return (Pow2(n-1) + Pow2(n-1));
>  }
>  else {
>  return 1;
>  }
>  }
>  Danke für deine Antwort!
>  
> Wären das dann
>  [mm]2*(Arraysize)^2-Arraysize+1[/mm] = [mm]O(Arraysize^2)[/mm] ?


Fast, du hast eine 2 beim arraysize vergessen.


> Ich habe jetzt direkt noch eine Frage... Wie geht bei bei
> der Analyse rekursiver Funktionen vor ?


Du mußt die Anzahl der Aufrufe der Funktion zählen bis eine (der) Abbruchbedingung(en) der Funktion erreicht ist.
Gibt es keine Abbruchbedingungen ist die Laufzeit der Funktion durch die, an die Funktion zugewiesene, Stackgröße begrenzt.


> Ich hätte jetzt gesagt, dass die Funktion "Pow1"
>  1 + 1*n schritte macht und dann eine Laufzeit von O(n)
> hätte.


Es ist sicherlich in O(n). Für n = 0, werden 2 Z.E. (if-Abfrage, return 1) verwendet. Für n = 1 wird erstmal 1 Z.E. mehr verwendet (if-Abfrage) und dann findet der Aufruf Pow1(0) statt, der 2 Z.E. benötigt, die anschließende Multiplikation mit Rückgabe soll jetzt mal 1 Z.E. benötigen. Insgesamt also: 1 + 2 + 1 = 4 = 2*2 Z.E. . Für n = 2 benötigt man bereits 2(if-Abfrage, return mit mult.) + Schritte für Pow1(1) = 2+4 = 6 = 2*3 Z.E. .

Behauptung: Für Pow1(n) benötigt man 2(n+1) Zeiteinheiten.

Beweis durch Induktion:

n = 0 klar. n -> n+1: Nach Induktionsannahme benötigt man für Pow1(n+1) 2(if-Abfrage, return mit mult.) + 2(n+1) Z.E. = 2(1+n+1) Z.E. = 2((n+1)+1) Z.E. qed


> bei Funktion "Pow2" bin ich mir wiederrum nicht sicher ob
> es O(2n) = O(n) oder [mm]O(n^2)[/mm] ist.


Pow2(0) : [mm]2\texttt{ ZE} = 2^1\texttt{ ZE}[/mm]
Pow2(1) : [mm]2^1\texttt{(if,+)} + 2^1 + 2^1\texttt{ ZE}=2^1+2^2\texttt{ ZE}[/mm]
Pow2(2) : [mm]2 + 2+2^2 + 2+2^2\texttt{ ZE}=2^1+2^2+2^3\texttt{ ZE}[/mm]
Pow2(3) : [mm]2^1 + 2^2 + 2^3 + 2^4\texttt{ ZE}[/mm]
Pow2(4) : [mm]2^1 + 2^2 + 2^3 + 2^4 + 2^5\texttt{ ZE}[/mm]

Vermutung: Pow2(n) : [mm]\textstyle\sum_{i=1}^{n+1}{2^i}\texttt{ ZE}[/mm].

Siehe dir nun die []geometrische Reihe an, um die Summe zu vereinfachen. Danach mußt du die Formel mit []vollständiger Induktion beweisen.

Gruß V.N.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]