www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenOGB normieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - OGB normieren
OGB normieren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

OGB normieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:51 Do 07.08.2014
Autor: Lisa641

Aufgabe
Die Gram-Matrix zur Basis B = [mm] (1,x,x^{2}) [/mm] lautet:
[mm] \phi [/mm] = [mm] \pmat{ 2 & 0 & \bruch{2}{3} \\ 0 & \bruch{2}{3} & 0 \\ \bruch{2}{3} & 0 & \bruch{2}{5}} [/mm]

Hallo ich soll mit nun die ONB berechnen.
Die Orthogonalbasis habe ich mit dem Gram-Schmidt Verfahren schon berechnet.
SIe lautet
(1, x, [mm] x^{2} [/mm] - [mm] \bruch{1}{3}) [/mm]

Doch wie normiere ich diese jetzt? Mit Vektoren wäre das kein Problem, doch so verwirrt mich das etwas.

Könnte mir jemand vllt behilflich sein? Danke! :)

        
Bezug
OGB normieren: Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 21:10 Do 07.08.2014
Autor: Marcel

Hallo,

> Die Gram-Matrix zur Basis B = [mm](1,x,x^{2})[/mm] lautet:
> [mm]\phi[/mm] = [mm]\pmat{ 2 & 0 & \bruch{2}{3} \\ 0 & \bruch{2}{3} & 0 \\ \bruch{2}{3} & 0 & \bruch{2}{5}}[/mm]
>  
> Hallo ich soll mit nun die ONB berechnen.
> Die Orthogonalbasis habe ich mit dem Gram-Schmidt Verfahren
> schon berechnet.
>  SIe lautet
>  (1, x, [mm]x^{2}[/mm] - [mm]\bruch{1}{3})[/mm]
>  
> Doch wie normiere ich diese jetzt? Mit Vektoren wäre das
> kein Problem, doch so verwirrt mich das etwas.
>  
> Könnte mir jemand vllt behilflich sein? Danke! :)

wie habt ihr denn das Skalarprodukt [mm] $\,$ [/mm] definiert? Damit ist dann
bspw. einfach

    [mm] $\|f\|:=\sqrt{}$ [/mm]

(man spricht von der "vom Skalarprodukt induzierten Norm") zu verwenden. Also

   [mm] $(\tfrac{1}{\|1\|},\;\tfrac{x}{\|x\|},\tfrac{x^2-1/3}{\|x^2-1/3\|})$ [/mm]

könntest Du berechnen. Dabei ist dann

    [mm] $\|x^2-1/3\|$ [/mm]

die Norm der Funktion $f [mm] \colon [/mm] x [mm] \mapsto x^2-1/3$ [/mm] (kurz: [mm] $\|f\|$), [/mm] die sich mit
dem Skalarprodukt zu [mm] $\|f\|=\sqrt{}$ [/mm] berechnet.

Ich könnte mir oben etwa vorstellen, dass ihr die Funktionen [mm] $\IR \ni [/mm] x [mm] \mapsto [/mm] 1 [mm] \in \IR\,,$ $\IR \ni [/mm] x [mm] \mapsto [/mm] x [mm] \in \IR$ [/mm] und
[mm] $\IR \ni [/mm] x [mm] \mapsto x^2 \in \IR$ [/mm] etwa nur auf [mm] $[a,b]\,$ [/mm] (mit $a > [mm] b\,$) [/mm] eingeschränkt betrachtet und für diese eingeschränkten
Funktionen (die ihr auch nur noch kurz als die Funktionen [mm] $1,\,x,\,x^2$ [/mm]
bezeichnet) dann etwa

    [mm] $:=\int_a^b [/mm] (f(x)*g(x))dx$

definiert habt - eventuell habt ihr diesen Ausdruck auch mit dem Vorfaktor
[mm] $\tfrac{1}{b-a}$ [/mm] versehen.

Aber dazu steht sicher was in Deinen Unterlagen. Bei Gram-Schmidt taucht
das Skalarprodukt ja auf - übrigens auch [mm] $\|f\|^2=\,,$ [/mm] also das Quadrat der
Norm.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]