www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenO Notation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algorithmen und Datenstrukturen" - O Notation
O Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O Notation: O Notation, Informatik II
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 12.04.2008
Autor: wolle238

Aufgabe
Gegeben seien die Funktionen
• [mm] f_1 (n) = 2n + 5 \, log \, n [/mm]
• [mm] f_2 (n) = 3n \cdot log n + 4 \cdot \wurzel{n} [/mm]
• [mm] f_3 (n) = 7n^2 \cdot \wurzel{n} [/mm]

• [mm] g_1 (n) = \wurzel{n} [/mm]
• [mm] g_2 (n) = n [/mm]
• [mm] g_3 (n) = n \, log \, n [/mm]
• [mm] g_4 (n) = n^2 [/mm]

Geben Sie (ohne Beweis) die Paare (i, j) an, für die [mm] f_i (n) \in O(g_j (n)) [/mm] gilt. Verwenden Sie hierbei die in der Vorlesung erwähnte Verallgemeinerung der Notation O(f) für [mm] f : \IN \rightarrow \IR [/mm]!

Hallo alle samt!!
Ich hab mal eine Frage zur der oben gestellten Aufgabe! Entweder habe ich die Aufgabe oder die O - Notation nicht verstanden. Als Definition für O-Notation habe ich mir aufgeschrieben:
O(f) := Alle Funktionen, die maximal so schnell wachsen wie die Funktion f.
Das heißt doch, dass [mm] g \in O(f) [/mm] auf jeden Fall langsamer, bzw. maximal genau so schnell wie f wächst (also immer unter dem Graphen von f bleibt), oder??
Weiter stand auf der Folie: [mm] O(f) = {g : \IN \rightarrow \IN | [/mm] Es existieren [mm] c_1 > 0 [/mm] und [mm] c_2 > 0 [/mm] für alle [mm] n \in \IN : g(n) \le c_1 \cdot f(n) + c_2} [/mm]
(http://www-wi.uni-muenster.de/pi/lehre/ss08/info2/folien/info2k1.pdf, Folie 6)

Ich habe mir die Funktionen mal gezeichnet. Bei diesen Aufgaben (http://www.wi.uni-muenster.de/pi/lehre/ss08/info2/uebungen/Uebung01.pdf; kompletter Aufgabenzettel) sollen die f-Funktionen ja maximal so schnell wachen wie die g-Funktionen (weil [mm] f_i (n) \in O(g_j (n)) [/mm] sein soll), oder sehe ich das falsch?? Aber beim Zeichnen hat sich ergeben, dass alle f-Funktionen schneller als die g-Funktionen! Irgendwie läuft das alles mal nicht! :(
Ich hoffe mir kann einer helfen!!
MfG und schonmal vielen Dank im Voraus!
Wolle

        
Bezug
O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 So 13.04.2008
Autor: Abelscherhesse

So findet man also seine Kommilitonen wieder, hallo J. ;D

Also, pass auf.

g [mm] \in [/mm] O(f(n)) bedeutet nur, dass du entweder für alle n sagen kannst g(n) [mm] \le [/mm] a [mm] \times [/mm] f(n) + b
oder
ab einem bestimmten N sind alle g(n) [mm] \le [/mm] a [mm] \times [/mm] f(n)

Wobei a und b halt irgendwelche Konstanten sind. Das heißt, wenn du f multiplizierts (also die Steigung konstant vergrößerst) oder etwas addierst (also die ganze Funktion "höher legst") dann ist f größer/gleicht g.

Nimm zum Beuspiel f(n)=n und g(n) = 10.
Es gilt g(n) [mm] \le [/mm] f(n) + 11 oder ab n=10 gilt g(n) [mm] \le [/mm] f(n) (je nach dem welche Notation du bevorzugst).
Das geht auch so direkt aus dem Skript zum Übungszettel hervor.

Du musst eigentlich immer nur den Teil der Funktion mit dem heftigsten Wachstum betrachten. Zum Beispiel gilt für jedes Polynom vierten Gerades (auch wenn es 100000000000000 * [mm] n^{4} [/mm] + 100000000000000 * [mm] n^{3} [/mm] + 100000000000000 * [mm] n^{2} [/mm] + 100000000000000 * n + 100000000000000 ist), dass es in [mm] O(n^{4}) [/mm] liegt.

So und den Rest schaffst du alleine!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]