www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenO Notation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algorithmen und Datenstrukturen" - O Notation
O Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O Notation: Frage
Status: (Frage) beantwortet Status 
Datum: 14:27 Di 05.04.2005
Autor: Flugzwerg

Hallo! Ich habe irgendwie diese O Notation noch nicht wirklich verstanden!

Hier meine frage:

Ich soll Funktionen mit hilfe der O Notation vereinfachen.

Wenn ich jetzt z.B: T1(n) = 2n+5 habe ist das  O(n) weil der Grenzwert 2 ist???
Oder weil ich alles bis auf n einfach weglassen kann?

bei T2(n) = k1 [mm] n^2-8 [/mm] = [mm] O(n^2) [/mm]  ist es ja auch das [mm] n^2. [/mm]

Genau verstehe ich das nicht.

bei T3(n) = k2 n log n + k3 = O(n log n)

kann mir das mal jemand am Beispiel T3  und bitte an   T3(n)+T2(n) und
T3(n)*T2(n) genau erläutern?

Ich komm einfach nicht weiter!!!

Danke,

NIK



        
Bezug
O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Di 05.04.2005
Autor: Bastiane

Hallo Nik!
Vielleicht hilft dir das hier weiter: [guckstduhier]

> Hallo! Ich habe irgendwie diese O Notation noch nicht
> wirklich verstanden!
>  
> Hier meine frage:
>  
> Ich soll Funktionen mit hilfe der O Notation vereinfachen.
>  
> Wenn ich jetzt z.B: T1(n) = 2n+5 habe ist das  O(n) weil
> der Grenzwert 2 ist???
>  Oder weil ich alles bis auf n einfach weglassen kann?

Ich würde das mit Worten so erklären, dass du die Funktion durch eine lineare Funktion (es ist ja O(n)) nach oben hin beschränken kannst.
  

> bei T2(n) = k1 [mm]n^2-8[/mm] = [mm]O(n^2)[/mm]  ist es ja auch das [mm]n^2.[/mm]
>  
> Genau verstehe ich das nicht.
>  
> bei T3(n) = k2 n log n + k3 = O(n log n)
>
> kann mir das mal jemand am Beispiel T3  und bitte an  
> T3(n)+T2(n) und
>  T3(n)*T2(n) genau erläutern?

Ich hab auch lange gebracht, bis ich das verstanden habe und bin mir nicht sicher, ob ich wirklich alles verstanden habe. Aber im Prinzip gibt es so ein paar "Beschränkungsklasse", eben z. B. O(n), [mm] O(n^2), [/mm] natürlich auch alle [mm] O(n^3), O(n^{irgendwas}), [/mm] aber eben auch O(log n), O(n log n), ich glaub', das sind die wichtigsten. In der Regel sucht man die kleinste Schranke für eine Funkion, und soweit ich weiß ist log n die beste Schranke, also wenn man einen Algorithmus hat, dessen Laufzeit dadurch beschränkt wird, dann ist das deutlich besser, als wenn sie nur durch n beschränkt wird.
Grob gesagt musst du bei solchen Aufgaben als Schranke immer den größten Term deiner Aufgabe nehmen. Wenn du also hättest log n+n dann könntest du das durch n beschränken, denn log n ist "kleiner" als n und n alleine wird auch durch n beschränkt.

Ich hoffe, ich konnte dir ein bisschen helfen - vielleicht hilft's auch, wenn du dir viele Aufgaben anguckst...

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
O Notation: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Di 05.04.2005
Autor: Flugzwerg

Hallo Bastiane!

Danke für Deine schnelle Antwort, so ähnlich habe ich es mir auch gedacht, war aber noch arg unsicher.

Zumindest konnte ich jetzt schon alte Einsendeaufgaben schon mal ganz gut lösen.

Musste lachen als ich den Thread gelesen habe den Du mir angegeben hast!
Mit dem Programmieren habe ich nämlich auch so meine Schwirigkeiten! Aber wer fleissig übt... ;-)

VG,

NIK

Bezug
        
Bezug
O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:04 Do 07.04.2005
Autor: bazzzty

Vielleicht noch mal eine kleine Zusammenfassung der [mm]\mathcal{O}[/mm]-Notation.

Für eine Funktion [mm]f(n)[/mm] ist [mm]\mathcal{O}(f)[/mm] definiert als die  Menge aller Funktionen [mm]g[/mm], für die es eine Konstante [mm]c[/mm] gibt, so daß ab einem [mm]n_0[/mm] gilt, daß [mm]g(n)\leq c\cdot f(n)[/mm], also
[mm]\mathcal{O}(f)=\{g\mid \exists c,n_0 \forall n\geq n_0: g(n)\leq cf(n)\}[/mm]

Mit anderen Worten: Die Menge [mm]\mathcal{O}(f)[/mm] beinhaltet all die Funktionen, die sich durch ein konstant skaliertes [mm]f[/mm] beschränken lassen.  Insofern wäre eigentlich korrekter, zu schreiben [mm]g\in\mathcal{O}(f)[/mm], aber das wird uneinheitlich gehandhabt.

Wenn man diese Definitionen im Kopf hat, dann muß man nicht mehr mutmaßen, sondern kann die Zuordnungen auch ganz leicht beweisen. Dabei versucht man immer, einen prägnanten, möglichst einschränkenden  Term zu finden, d.h. Es ist zwar [mm]n+n\log n+3^2\in \mathcal{O}(n^2)[/mm], aber das schränkt nicht besonders eng ein, andererseits ist [mm]n+n\log n+3^2\in \mathcal{O}(12\cdot n\log n+23)[/mm], und das ist auch 'einschränkend' in dem Sinne, daß auch [mm]12\cdot n\log n+23\in \mathcal{O}(n+n\log n+3^2)[/mm] liegt, aber besonders prägnant ist es eben nicht.

Zu deinen Aufgaben (die Du ja wohl schon raushast, aber eben mehr mit Hingucken):
[mm]T_1=2n+5=\mathcal{O}(n)[/mm], weil [mm]\forall n\geq 3:2n+5\leq 3n[/mm] ([mm]n_0=3, c=3[/mm], zum Beispiel)

[mm]T_2=k_1n^2-8=\mathcal{O}(n)[/mm], weil [mm]\forall n:k_1n^2-8\leq k_1n^2[/mm] ([mm]n_0=0, c=k_1[/mm], wieder nicht als einzige Möglichkeit)

[mm]k_2 n \log n + k_3=\mathcal{O}(n\log n)[/mm], weil [mm]\forall n\geq 1: (k_2+k_3) n\log n[/mm] ([mm]n_0=1, c=k_2+k_3[/mm])

So, jetzt suchst Du für
[mm]T_4=T_2+T_3[/mm] und für [mm]T_5=T_2\cdot T_3[/mm] noch Abschätzungen. Und da hilft Dir etwas, daß Du Dir jetzt leicht selbst überlegen kannst:

Ist [mm]T_1 \in \mathcal{O}(f_1)[/mm] und [mm]T_2 \in \mathcal{O}(f_2)[/mm], dann ist [mm]T_1+T_2[/mm] in [mm]\mathcal{O}(f_1+f_2)[/mm]
[mm]T_1\cdot T_2[/mm] ist in jedem Fall in [mm]\mathcal{O}(f_1\cdot f_2)[/mm].  Beide Ergebnisse lassen sich gegebenenfalls noch verbessern, indem man eine Funktion [mm]f_3[/mm] findet, so daß [mm]f_1+f_2\in \mathcal{O}(f_3)[/mm] bzw. [mm]f_1\cdot f_2\in \mathcal{O}(f_3)[/mm]. Tipp: Im [mm]\mathcal{O}[/mm]-Kalkül sind Summen nie nötig, d.h. [mm]f_1+f_2\in \mathcal{O}(f_1)[/mm] oder [mm]f_1+f_2\in \mathcal{O}(f_2)[/mm] (warum?).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]