O(g) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Habe folgende Matrix:
[mm] \[J=\begin{pmatrix} \mu\cdot \left(\frac{D_1}{D_1+D_2}\right)^{\mu-1}\cdot \frac{D_2}{(D_1+D_2)^2}-1&\hspace{1cm}&-
\mu\cdot \left(\frac{D_1}{D_1+D_2}\right)^{\mu-1}\cdot \frac{D_1}{(D_1+D_2)^2}\\\\
-\mu\cdot \left(\frac{D_2}{D_1+D_2}\right)^{\mu-1}\cdot \frac{D_2}{(D_1+D_2)^2}&&\mu\cdot\left(\frac{D_1}{D_1+D_2}\right)^{\mu-1}\cdot \frac{D_1}{(D_1+D_2)^2}-1
\end{pmatrix}\]
[/mm]
Betrachte [mm] \mu<1 [/mm] und [mm] D_1=\epsilon [/mm] mit [mm] \epsilon\rightarrow [/mm] 0.
Dann ergibt sich
[mm] \[J=\begin{pmatrix}
\epsilon^{-1}& O(1)\\ O(1)&O(1)
\end{pmatrix}\] [/mm] |
Ich hab für [mm] D_2=1 [/mm] eingesetzt und erhalte so für [mm] \epsilon\rightarrow [/mm] 0 die einzelnen Einträge:
[mm] a_{11}\rightarrow \infty
[/mm]
[mm] a_{12} [/mm] =0
[mm] a_{21}=-\mu
[/mm]
[mm] a_{22}=-1
[/mm]
mit [mm] f\in [/mm] O(1) wird laut wikipedia bezeichnet: f überschreitet einen konstanten Wert nicht. Dann wären meine konstanten Werte hier die 0, [mm] -\mu [/mm] und -1, die die jeweilige Funktion f (aus der Jacobimatrix) nicht überschreitet, oder?
|
|
|
|
So und jetzt soll ich für diese Matrix
[mm] J=\begin{pmatrix}\epsilon^-1 &O(1)\\O(1)&O(1)\end{pmatrix} [/mm] die Eigenwerte bestimmen. Laut dem Script soll diese Matrix f"ur ein kleines [mm] \epsilon [/mm] einen Eigenwert +1 besitzen.
Wenn ich dann rechne
[mm] det\begin{pmatrix}\epsilon^-1-\lambda &O(1)\\O(1)&O(1)-\lambda\end{pmatrix}
[/mm]
und das ganze lösen will, komme ich einfach nicht auf einen Eigenwert von 1. Ich hab die Eigenwerte mit maxima berechnet und kriege
folgende Eigenwerte
[mm] \left[ -\frac{\sqrt{5O(1)^2\epsilon^2-2O(1)\epsilon+1}-O(1)\epsilon-1}{2\epsilon},\frac{\sqrt{5O(1)^2\epsilon^2-2O(1)\epsilon+1}+O(1)\epsilon+1}{2\epsilon}\right]
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Mi 16.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mi 16.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|