www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationOber-/Untersummen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Ober-/Untersummen
Ober-/Untersummen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober-/Untersummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 01.02.2010
Autor: peeetaaa

Aufgabe
f: [mm] \IR-->\IR [/mm]
f(x)=x
finden Sie eine Obersumme und eine Untersumme bzgl. f auf [0;1] ( mit den dazugehörenden Treppenfunktionen)

Hallo zusammen,

wollte diese Aufgabe mal machen um das mit der bestimmung von unter- und obersumme mal zu üben! aber da ich das erst seit kurzem haben weiß ich gar nicht wie ich hier anfangen soll und wie das überhaupt geht!!
kann mir das vllt jmd erklären?
danke!

        
Bezug
Ober-/Untersummen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Di 02.02.2010
Autor: Teufel

Hi!

Am besten du zerlegst das Intervall in n Teile gleicher Länge, sodass die Rechtecke dann eine gleichlange Grundseite haben.

Nehmen wir mal beispielsweise n=3.

Wenn du das Intervall z.B. in 3 Teile zerlegst (von 0 bis [mm] \bruch{1}{3}, [/mm] von [mm] \bruch{1}{3} [/mm] bis [mm] \bruch{2}{3} [/mm] und von [mm] \bruch{2}{3} [/mm] bis 1), kannst du damit die Ober- und Untersumme berechnen.

Die Untersumme wäre dann [mm] U=\bruch{1}{3}*0+\bruch{1}{3}*\bruch{1}{3}+\bruch{1}{3}*\bruch{2}{3}, [/mm] was einfach die Flächeninhalte der 3 Rechtecke unter dem Grafen sind (wobei das 1. eben eine Höhe von 0 hat).
Die Obersumme wäre [mm] O=\bruch{1}{3}*\bruch{1}{3}+\bruch{1}{3}*\bruch{2}{3}+\bruch{1}{3}*1. [/mm]

Das kannst du ja vielleicht nochmal für n=4 oder n=5 machen, oder du siehst direkt die allgemeine Form, wenn man dann n Teile hat.

Beachte auch, dass [mm] \summe_{k=1}^{n}k=\bruch{n(n+1)}{2} [/mm] ist.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]