www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungOber und Untersumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Ober und Untersumme
Ober und Untersumme < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober und Untersumme: Umformung
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 07.01.2009
Autor: Pia90

Hallo zusammen!

Wir haben vor kurzem mit INtegralrechnung angefangen und sollen nun sozusagen die Berechnung von Ober und Untersumme verbessern. Dazu haben wir das Intervall [0;4] in n Intervalle eingeteilt.
Unsere Funktion ist [mm] I(t)=\bruch{1}{4} t^2 [/mm] + 1
durch die Einteilung in n Intervalle ist [mm] \Delta [/mm] t = [mm] \bruch{4}{n} [/mm]

Also hab ich jetzt aufgestellt, dass die Untersumme
[mm] \underline{Q_{n}} [/mm] = I(0)* [mm] \bruch{4}{n} [/mm] + I( [mm] \bruch{4}{n})* \bruch{4}{n} [/mm] + I(2* [mm] \bruch{4}{n})* \bruch{4}{n} [/mm] + I(3*  [mm] \bruch{4}{n})* \bruch{4}{n} [/mm] + ... + I(4- [mm] \bruch{4}{n})* \bruch{4}{n} [/mm]
ist. Das muss ich jetzt aber irgendwie vereinfachen... ich poste mal wie weit ich gekommen bin, aber dann weiß ich nicht wie ich weiter vorgehen soll. Hoffe mir kann jemand helfen. Danke schonmal im voraus!
Also : [mm] \underline{Q_{n}} [/mm] =  [mm] \bruch{4}{n} [/mm] * ( I(0) + I( [mm] \bruch{4}{n})+ I(2*\bruch{4}{n})+ [/mm] I(3* [mm] \bruch{4}{n}) [/mm] + ... + I(4- [mm] \bruch{4}{n})) [/mm]
=  [mm] \bruch{4}{n} [/mm] * ( [mm] \bruch{4}{n^2} [/mm] + [mm] \bruch{32}{n^2} [/mm] +  [mm] \bruch{48}{n^2} [/mm] + ... +  [mm] \bruch{4*(n-1)^2}{n^2} [/mm] + n)
=  [mm] \bruch{4}{n} [/mm] * (  [mm] \bruch{1}{n^2}*(4+32+48+ [/mm] ...+ [mm] 4*(n-1)^2 [/mm] + [mm] n^3)) [/mm]
=  [mm] \bruch{4}{n^3}* [/mm] (4+32+48+ ...+ [mm] 4*(n-1)^2+n^3) [/mm]

        
Bezug
Ober und Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mi 07.01.2009
Autor: MathePower

Hallo Pia90,

> Hallo zusammen!
>  
> Wir haben vor kurzem mit INtegralrechnung angefangen und
> sollen nun sozusagen die Berechnung von Ober und Untersumme
> verbessern. Dazu haben wir das Intervall [0;4] in n
> Intervalle eingeteilt.
>  Unsere Funktion ist [mm]I(t)=\bruch{1}{4} t^2[/mm] + 1
>  durch die Einteilung in n Intervalle ist [mm]\Delta[/mm] t =
> [mm]\bruch{4}{n}[/mm]
>  
> Also hab ich jetzt aufgestellt, dass die Untersumme
>  [mm]\underline{Q_{n}}[/mm] = I(0)* [mm]\bruch{4}{n}[/mm] + I( [mm]\bruch{4}{n})* \bruch{4}{n}[/mm]
> + I(2* [mm]\bruch{4}{n})* \bruch{4}{n}[/mm] + I(3*  [mm]\bruch{4}{n})* \bruch{4}{n}[/mm]
> + ... + I(4- [mm]\bruch{4}{n})* \bruch{4}{n}[/mm]
>  ist. Das muss ich
> jetzt aber irgendwie vereinfachen... ich poste mal wie weit
> ich gekommen bin, aber dann weiß ich nicht wie ich weiter
> vorgehen soll. Hoffe mir kann jemand helfen. Danke schonmal
> im voraus!
>  Also : [mm]\underline{Q_{n}}[/mm] =  [mm]\bruch{4}{n}[/mm] * ( I(0) + I(
> [mm]\bruch{4}{n})+ I(2*\bruch{4}{n})+[/mm] I(3* [mm]\bruch{4}{n})[/mm] + ...
> + I(4- [mm]\bruch{4}{n}))[/mm]
>  =  [mm]\bruch{4}{n}[/mm] * ( [mm]\bruch{4}{n^2}[/mm] + [mm]\bruch{32}{n^2}[/mm] +  
> [mm]\bruch{48}{n^2}[/mm] + ... +  [mm]\bruch{4*(n-1)^2}{n^2}[/mm] + n)
>  =  [mm]\bruch{4}{n}[/mm] * (  [mm]\bruch{1}{n^2}*(4+32+48+[/mm] ...+
> [mm]4*(n-1)^2[/mm] + [mm]n^3))[/mm]
>  =  [mm]\bruch{4}{n^3}*[/mm] (4+32+48+ ...+ [mm]4*(n-1)^2+n^3)[/mm]  


Für die Summe der ersten k Quadratzahlen gibt es eine Formel:

[mm]\summe_{i=1}^{k}i^{2}=\bruch{k*\left(k+1\right)*\left(k+2\right)}{6}[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]