www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieOffene Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Offene Menge
Offene Menge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:50 Do 29.10.2009
Autor: math101

Aufgabe
Sei (X, [mm] \rho) [/mm] ein metrischer Raum, und [mm] M\in [/mm] Xwird als metrischer Unterraum [mm] (M,\rho_{M\times M}) [/mm] betrachtet.
Zeigen Sie, [mm] U\in [/mm] M in [mm] (M,\rho_{M\times M}) [/mm] offen [mm] \gdw \exists G\in [/mm] X offen in (X, [mm] \rho [/mm] ) so dass [mm] U=G\cap [/mm] M.

Hallo!!
Konfrontiere gerade mit der Aufgabe.
[mm] '\Rightarrow' [/mm]   :   [mm] U\in [/mm] M in [mm] (M,\rho_{M\times M}) [/mm] offen [mm] \Rightarrow \forall x\in [/mm] U [mm] \exists [/mm] r>0 mit [mm] B(x,r)\subset [/mm] M. Im Hinweis zu der Aufgabe steht, wir müssen [mm] G=\cup \{ B(x,r):x\in M, B(x,r)\cap M\subset U\} [/mm] verwenden, aber irgendwie fehlt es mir an Argumentationen.
Ich freue mich auf jede Antwort.
LG

        
Bezug
Offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Fr 30.10.2009
Autor: pelzig

Ja du musst natürlich in der Notation mit angeben ob du jetzt einen Ball in $M$ oder in $X$ meinst. Jedenfalls ist dein Ansatz schon nicht schlecht, ist [mm] $U\subset [/mm] M$ offen in M, dann gibt es zu jedem [mm] $x\in [/mm] U$ ein [mm] $B^M_r(x)\subset [/mm] U$. Nun setze [mm] $G:=\bigcup_{x\in U} B^X_r(x)\subset [/mm] X$. Das ist als Vereinigung offener Mengen offen in X und nach Konstruktion ist [mm] $G\cap [/mm] M=U$.

Gruß, Robert

Bezug
                
Bezug
Offene Menge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:13 Fr 30.10.2009
Autor: math101

Hallo, pelzig!!!Vielen-vielen dank für deine Antwort!!
> ist [mm]U\subset M[/mm] offen in M,
> dann gibt es zu jedem [mm]x\in U[/mm] ein [mm]B^M_r(x)\subset U[/mm].

Das meinte ich, dass die Kugeln in M liegen.

> Nun setze [mm]G:=\bigcup_{x\in U} B^X_r(x)\subset X[/mm]. Das ist als
> Vereinigung offener Mengen offen in X und nach Konstruktion
> ist [mm]G\cap M=U[/mm].

Ist damit dann der Beweis der 'Hin'richtung fertig?
[mm] "\Leftarrow" [/mm]
Es existiert offene Menge G mit [mm] G\cap{M}=U. [/mm] Sei [mm] G=\bigcup_{x\in U} B_r^X(x)\subset{X} [/mm] mit [mm] \forall x\in{M}: B_r^X(x) \cap{M}\subset{U}, [/mm] da [mm] G\cap{M} [/mm] offen [mm] \Rightarrow [/mm] U ist auch offen.
Kann ich den Rückrichtungbeweis so argumentieren?
Vielen Dank noch mal für deine Hilfe?
LG


Bezug
                        
Bezug
Offene Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 01.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]