Offene Überdeckungen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:12 Mi 16.11.2011 | Autor: | Lyrn |
Aufgabe | Sei [mm]U_{\lambda}, \lambda \in \Lambda[/mm] eine offene Überdeckung des Intervalls [mm][0,1] \subset \IR[/mm], d.h. [mm]\Lambda[/mm] ist eine Menge, für jedes [mm] \lambda \in \Lambda[/mm] ist [mm] U_{\lambda} [/mm] eine offene Teilmenge in [mm]\IR[/mm] und [mm] [0,1] \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}[/mm]. Im Folgenden verwenden wir die Notation [mm]B_{\varepsilon}(x)=\{y | |x-y| < \varepsilon\}[/mm].
Zeigen Sie:
i) Es gibt endlich viele Punkte [mm]x_1,...,x_k[/mm] in [0,1] und positive reelle Zahlen [mm]\varepsilon_{1},...,\varepsilon_{k}[/mm], so dass gilt:
a) [mm][0,1] \subseteq B_{\bruch{\varepsilon_1}{2}}(x_1) \cup ... \cup B_{\bruch{\varepsilon_k}{2}}(x_k)[/mm].
b) Zu jedem [mm]i \in 1,...k[/mm] existiert ein [mm]\lambda \in \Lambda [/mm] mit [mm] B_{\varepsilon_i}(x_i) \subseteq U_{\lambda}[/mm].
ii) Es existiert ein [mm]\varepsilon >0[/mm], so dass für alle [mm]x \in [0,1][/mm] ein [mm]\lambda \in \Lambda[/mm] existiert mit [mm] B_{\varepsilon}(x) \subseteq U_{\lambda}[/mm] |
Hallo liebe Mathefreunde!
Ich kann hier etwas Hilfe gebrauchen:
Zu (i) [mm]B_{\bruch{\varepsilon_1}{2}}(x_1)=\{y_1 | |x_1 -y_1| < \bruch{\varepsilon_1}{2}\}[/mm], [mm] \dots [/mm] ,[mm]B_{\bruch{\varepsilon_k}{2}}(x_k)=\{y_k | |x_k -y_k| < \bruch{\varepsilon_1}{2}\}[/mm]
Das heißt ja, dass ich die offenen Intervalle habe
[mm]B_{\bruch{\varepsilon_i}{2}}(x_i)=(x_i-\bruch{\varepsilon_i}{2},x_i-1+\bruch{\varepsilon_i}{2})[/mm]
[mm]B_{\bruch{\varepsilon_1}{2}}(x_1) \cup ... \cup B_{\bruch{\varepsilon_k}{2}}(x_k)=\bigcup_{i=1}^{k} (x_i-\bruch{\varepsilon_i}{2},x_i+\bruch{\varepsilon_i}{2})[/mm] Wie kann ich hier jetzt argumentieren, dass das Intervall
[mm][0,1]\subseteq \bigcup_{i=1}^{k} (x_i-\bruch{\varepsilon_i}{2},x_i+\bruch{\varepsilon_i}{2})[/mm].
Ich freue mich über jeden Hinweis.
Danke schon mal für die Hilfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:04 Do 17.11.2011 | Autor: | rainerS |
Hallo!
> Sei [mm]U_{\lambda}, \lambda \in \Lambda[/mm] eine offene
> Überdeckung des Intervalls [mm][0,1] \subset \IR[/mm], d.h. [mm]\Lambda[/mm]
> ist eine Menge, für jedes [mm]\lambda \in \Lambda[/mm] ist
> [mm]U_{\lambda}[/mm] eine offene Teilmenge in [mm]\IR[/mm] und [mm][0,1] \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}[/mm].
> Im Folgenden verwenden wir die Notation
> [mm]B_{\varepsilon}(x)=\{y | |x-y| < \varepsilon\}[/mm].
> Zeigen Sie:
> i) Es gibt endlich viele Punkte [mm]x_1,...,x_k[/mm] in [0,1] und
> positive reelle Zahlen [mm]\varepsilon_{1},...,\varepsilon_{k}[/mm],
> so dass gilt:
>
> a) [mm][0,1] \subseteq B_{\bruch{\varepsilon_1}{2}}(x_1) \cup ... \cup B_{\bruch{\varepsilon_k}{2}}(x_k)[/mm].
>
> b) Zu jedem [mm]i \in 1,...k[/mm] existiert ein [mm]\lambda \in \Lambda[/mm]
> mit [mm]B_{\varepsilon_i}(x_i) \subseteq U_{\lambda}[/mm].
>
> ii) Es existiert ein [mm]\varepsilon >0[/mm], so dass für alle [mm]x \in [0,1][/mm]
> ein [mm]\lambda \in \Lambda[/mm] existiert mit [mm]B_{\varepsilon}(x) \subseteq U_{\lambda}[/mm]
>
> Hallo liebe Mathefreunde!
> Ich kann hier etwas Hilfe gebrauchen:
> Zu (i) [mm]B_{\bruch{\varepsilon_1}{2}}(x_1)=\{y_1 | |x_1 -y_1| < \bruch{\varepsilon_1}{2}\}[/mm],
> [mm]\dots[/mm] ,[mm]B_{\bruch{\varepsilon_k}{2}}(x_k)=\{y_k | |x_k -y_k| < \bruch{\varepsilon_1}{2}\}[/mm]
>
> Das heißt ja, dass ich die offenen Intervalle habe
>
> [mm]B_{\bruch{\varepsilon_i}{2}}(x_i)=(x_i-\bruch{\varepsilon_i}{2},x_i-1+\bruch{\varepsilon_i}{2})[/mm]
> [mm]B_{\bruch{\varepsilon_1}{2}}(x_1) \cup ... \cup B_{\bruch{\varepsilon_k}{2}}(x_k)=\bigcup_{i=1}^{k} (x_i-\bruch{\varepsilon_i}{2},x_i+\bruch{\varepsilon_i}{2})[/mm]
> Wie kann ich hier jetzt argumentieren, dass das Intervall
> [mm][0,1]\subseteq \bigcup_{i=1}^{k} (x_i-\bruch{\varepsilon_i}{2},x_i+\bruch{\varepsilon_i}{2})[/mm].
Es geht darum, zu zeigen, dass du aus den (eventuell unendlich vielen) [mm] $U_\lambda$ [/mm] endlich viele (sagen wir k Stück) auswählen kannst, sodass die offenen Intervalle [mm]B_{\varepsilon_i}(x_i) \subseteq U_{\lambda}[/mm] zusammengenommen das Intervall $[0,1]$ überdecken.
Der entscheidende Punkt ist, dass endlich viele ausreichen.
Tipp: fang am linken Ende des Intervalls an, wähle also eines der [mm] $U_{\lambda}$, [/mm] das den Punkt 0 enthält; am besten wählst du es so, dass das Intervall [mm] $B_{\bruch{\varepsilon_1}{2}}(x_1)$ [/mm] möglichst groß wird. Dann suchst du dir ein neues [mm] $U_{\lambda}$ [/mm] aus, sodass das darin enthaltene Intervall [mm] $B_{\bruch{\varepsilon_2}{2}}(x_2)$ [/mm] das erste ein wenig überlappt, und so weiter, bis du am rechten Rand des Intervalls angekommen bist.
Warum kannst du durch geschickte Wahl immer mit endlich vielen Schritten auskommen?
Viele Grüße
Rainer
|
|
|
|