www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Offenes Intervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Offenes Intervall
Offenes Intervall < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offenes Intervall: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:18 Mo 08.12.2008
Autor: wasistmathe

Aufgabe
Sei [mm] I\subset \IR [/mm] ein offenes Intervall. Zeigen Sie, dass eine Funktion [mm] f:I->\IR [/mm] genau dann stetig ist, wenn für jede offene Teilmenge m [mm] \subset \IR [/mm] auch die Menge [mm] f^{-1}(M) [/mm] offen ist.

Ich denke ich brauche nur einen Tipp für den Ansatz, damit ich die Aufgabe gelöst bekomme. Danke im voraus

        
Bezug
Offenes Intervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Mo 08.12.2008
Autor: wasistmathe

Kann ich die Aufgabe über folgenden Ansatz lösen?

Sind I ein Intervall in [mm] \mathbb{R} [/mm] und [mm] f\colon I\rightarrow\mathbb [/mm] R eine stetige, streng monoton wachsende oder streng monoton fallende Funktion, dann ist das Bild von f ein Intervall J, [mm] f\colon I\to [/mm] J ist bijektiv, und die Umkehrfunktion [mm] f^{-1}\colon J\to [/mm] I ist stetig. Somit ist f ein Homöomorphismus von I nach J.

Dies gilt wie angegeben nur für Funktionen, die im gesamten Intervall stetig sind. Ist f eine umkehrbare und an der Stelle x0 stetige Funktion, so ist die Umkehrfunktion f − 1 an der Stelle f(x0) im Allgemeinen nicht stetig.

Bezug
                
Bezug
Offenes Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mo 08.12.2008
Autor: angela.h.b.


> Kann ich die Aufgabe über folgenden Ansatz lösen?
>  
> Sind I ein Intervall in [mm]\mathbb{R}[/mm] und [mm]f\colon I\rightarrow\mathbb[/mm]
> R eine stetige, streng monoton

Hallo,

in Deiner Aufgabe ist doch nicht von einer monotonen Funktion die Rede und auch nicht von einer Umkehrfunktion, sondern von den Urbildern  offener Mengen.

Gruß v. Angela



wachsende oder streng

> monoton fallende Funktion, dann ist das Bild von f ein
> Intervall J, [mm]f\colon I\to[/mm] J ist bijektiv, und die
> Umkehrfunktion [mm]f^{-1}\colon J\to[/mm] I ist stetig. Somit ist f
> ein Homöomorphismus von I nach J.
>  
> Dies gilt wie angegeben nur für Funktionen, die im gesamten
> Intervall stetig sind. Ist f eine umkehrbare und an der
> Stelle x0 stetige Funktion, so ist die Umkehrfunktion f
> − 1 an der Stelle f(x0) im Allgemeinen nicht stetig.


Bezug
                        
Bezug
Offenes Intervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Mo 08.12.2008
Autor: wasistmathe

ja das stimmt aber ich finde sonst leider keinen Ansatz, hast du eine Idee wie ich das angehen kann?

Bezug
        
Bezug
Offenes Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Mo 08.12.2008
Autor: SEcki


>  Ich denke ich brauche nur einen Tipp für den Ansatz, damit
> ich die Aufgabe gelöst bekomme. Danke im voraus

Welche Definition von Stetigkeit hattet ihr denn genau? Bei dem Epsilon-Delta-Kriterium betrachte man betsen mal [m]f^{-1}(B_\epsilon(f(x_0)))[/m]. Da das Urbild offen ist folgt dann was? Für die andere Richtung: offene Mengen sind Vereinigung von Bällen.

SEcki

Bezug
        
Bezug
Offenes Intervall: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:51 Mo 08.12.2008
Autor: Heureka89

Aufgabe
Sei I [mm] \subset \IR [/mm] ein offenes Intervall. Zeigen Sie, dass eine Funktion f: I [mm] \to \IR [/mm] genau dann stetig ist, wenn für jede offene Teilmenge M [mm] \subset \IR [/mm] auch die Menge f^-1(M) offen ist.

Hallo,

also hier sind ja zwei Richtungen zu beweisen.
Ich tue mich leider mit Beweisen noch schwer und weiß nicht wie ich anfangen soll. Ein kleiner Tipp wäre hilfreich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]