www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOperatoren, Operatornorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Operatoren, Operatornorm
Operatoren, Operatornorm < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operatoren, Operatornorm: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:25 Fr 13.06.2008
Autor: broergoer

Aufgabe
Ist S [mm] \in [/mm] L(Y,Z) und T [mm] \in [/mm] L(X,Y), so ist S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) und es gilt [mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le \parallel [/mm] S [mm] \parallel \parallel [/mm] T [mm] \parallel. [/mm]

Also: L(X,Y) ist der Raum der stetigen, linearen Funktionen die von X nach Y abbilden.
Dass gilt: S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) habe ich schon gezeigt, das war ganz leicht. Stetigkeit folgt aus der Stetigkeit von T und S, die Linearität bekommt man durch ein bisschen umformen und durch die Voraussetzungen, dass T und S linear sind und dass S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) von X nach Z abbildet ist auch leicht zu zeigen.

Aber wie geht der zweite Aufgabenteil?
Es ist mir schon klar, dass das gelten muss, aber wie beweise ich das?

[mm] \parallel [/mm] * [mm] \parallel [/mm] bezeichnet die Operatornorm, die wie folgt definiert ist:
[mm] \parallel [/mm] A [mm] \parallel [/mm] (Operatornorm) = sup [mm] \parallel [/mm] A [mm] \parallel [/mm] bzgl der Norm des Raumes, in den A abbildet., wobei [mm] \parallel [/mm] A [mm] \parallel [/mm] bzgl dieser Norm immer [mm] \le [/mm] 1 ist.
Also ich habe

[mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le \parallel [/mm] S [mm] \parallel \parallel [/mm] T [mm] \parallel. [/mm]

wobei [mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le [/mm] 1
[mm] \parallel [/mm] S [mm] \parallel \le [/mm] 1
[mm] \parallel [/mm] T [mm] \parallel \le [/mm] 1

Hat jemand eine Idee?
Das wäre ganz super!

Viele Grüße

broergoer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Operatoren, Operatornorm: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Sa 14.06.2008
Autor: Somebody


> Ist S [mm]\in[/mm] L(Y,Z) und T [mm]\in[/mm] L(X,Y), so ist S [mm]\circ[/mm] T [mm]\in[/mm]
> L(X,Z) und es gilt [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le \parallel[/mm]
> S [mm]\parallel \parallel[/mm] T [mm]\parallel.[/mm]
>  Also: L(X,Y) ist der Raum der stetigen, linearen
> Funktionen die von X nach Y abbilden.
>  Dass gilt: S [mm]\circ[/mm] T [mm]\in[/mm] L(X,Z) habe ich schon gezeigt,
> das war ganz leicht. Stetigkeit folgt aus der Stetigkeit
> von T und S, die Linearität bekommt man durch ein bisschen
> umformen und durch die Voraussetzungen, dass T und S linear
> sind und dass S [mm]\circ[/mm] T [mm]\in[/mm] L(X,Z) von X nach Z abbildet
> ist auch leicht zu zeigen.
>  
> Aber wie geht der zweite Aufgabenteil?
>  Es ist mir schon klar, dass das gelten muss, aber wie
> beweise ich das?
>  
> [mm]\parallel[/mm] * [mm]\parallel[/mm] bezeichnet die Operatornorm, die wie
> folgt definiert ist:
>  [mm]\parallel[/mm] A [mm]\parallel[/mm] (Operatornorm) = sup [mm]\parallel[/mm] A
> [mm]\parallel[/mm] bzgl der Norm des Raumes, in den A abbildet.,
> wobei [mm]\parallel[/mm] A [mm]\parallel[/mm] bzgl dieser Norm immer [mm]\le[/mm] 1
> ist.
>  Also ich habe
>
> [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le \parallel[/mm] S [mm]\parallel \parallel[/mm]
> T [mm]\parallel.[/mm]
>  
> wobei [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le[/mm] 1
>  [mm]\parallel[/mm] S [mm]\parallel \le[/mm] 1
> [mm]\parallel[/mm] T [mm]\parallel \le[/mm] 1
>  
> Hat jemand eine Idee?
>  Das wäre ganz super!

Mir kommt Deine Beschreibung der Operatornorm reichlich konfus vor. - Wie auch immer: gilt für Deine Operatornorm nicht so etwas wie [mm] $\parallel S(y)\parallel \leq \parallel S\parallel \;\parallel y\parallel$ [/mm] bzw. [mm] $\parallel T(x)\parallel \leq \parallel T\parallel\; \parallel x\parallel$? [/mm] Wenn ja, dann folgt

[mm]\parallel (S\circ T)(x)\parallel \quad\leq \quad\parallel S\parallel \; \parallel T(x)\parallel \quad\leq\quad \parallel S\parallel \; \parallel T\parallel\; \parallel x\parallel[/mm]

Daraus sollte sich doch für den gesuchten Beweis etwas machen lassen...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]