Optimale Gewichtung Portfolio < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Finde die Aktiengewichtungen bei der die Portfoliovarianz minimert wird. |
Hallo,
ich soll also die optimale Gewichtung innerhalb eines Aktienportfolios finden. Ich kenne die Formel zur Errechnung der Varianz des zusammengesetzten Depots und weiss auch dass ich durch Ableitung minimieren kann, bleibe aber schon auf dem Weg dorthin hängen, nämlich beim Zusammenfassen des Terms.
Die Formel lautet [mm] Var(rp)=w1^{2}\*Var(r1)+w2^{2}\*Var(r2)+2\*w1\*w2\*Korr(1,2)\*[Std(r1)\*Std(r2)]
[/mm]
Hier stehen Var für Varianz, 1 u 2 für die verschiedenen Aktien, w für die jeweiligen Anteile am Portfolio (wobei w2 gleich (1-w) ist, da die Summe beider am Depot 1 ergibt), Korr(1,2) für den Korrelationseffizienten und Std(1/2) für die Standardabweichung.
Soweit so gut, wenn ich die mir bekannten Werte einsetze, dann bekomme ich:
[mm] Var(rp)=w^{2}\*16+(1-w)^{2}\*81+2\*w\*(w-1)\*(-0,4)\*0,04\*0,09
[/mm]
Laut der vorliegenden Lösung wäre der nächste Schritt:
[mm] Var(rp)=16w^{2}+81w^{2}-162w+81-28,8w+28,8w^{2}
[/mm]
Leider komme ich da "ums Verrecken" nicht hin... hier liegt wohl ein Defizit bei den mathematischen Grundlagen vor... Es ist sehr wichtig, da ich genau diese Aufgabenstellung desöfteren haben werde, wer kann helfen???
Vorab vielen Dank!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:19 Mi 13.05.2009 | Autor: | djmatey |
> Finde die Aktiengewichtungen bei der die Portfoliovarianz
> minimert wird.
> Hallo,
>
> ich soll also die optimale Gewichtung innerhalb eines
> Aktienportfolios finden. Ich kenne die Formel zur
> Errechnung der Varianz des zusammengesetzten Depots und
> weiss auch dass ich durch Ableitung minimieren kann, bleibe
> aber schon auf dem Weg dorthin hängen, nämlich beim
> Zusammenfassen des Terms.
>
> Die Formel lautet
> [mm]Var(rp)=w1^{2}\*Var(r1)+w2^{2}\*Var(r2)+2\*w1\*w2\*Korr(1,2)\*[Std(r1)\*Std(r2)][/mm]
>
> Hier stehen Var für Varianz, 1 u 2 für die verschiedenen
> Aktien, w für die jeweiligen Anteile am Portfolio (wobei w2
> gleich (1-w) ist, da die Summe beider am Depot 1 ergibt),
> Korr(1,2) für den Korrelationseffizienten und Std(1/2) für
> die Standardabweichung.
>
> Soweit so gut, wenn ich die mir bekannten Werte einsetze,
> dann bekomme ich:
>
> [mm]Var(rp)=w^{2}\*16+(1-w)^{2}\*81+2\*w\*(w-1)\*(-0,4)\*0,04\*0,09[/mm]
>
> Laut der vorliegenden Lösung wäre der nächste Schritt:
>
> [mm]Var(rp)=16w^{2}+81w^{2}-162w+81-28,8w+28,8w^{2}[/mm]
>
> Leider komme ich da "ums Verrecken" nicht hin... hier liegt
> wohl ein Defizit bei den mathematischen Grundlagen vor...
> Es ist sehr wichtig, da ich genau diese Aufgabenstellung
> desöfteren haben werde, wer kann helfen???
Hallo,
wenn ich dich recht verstanden habe, geht es also darum, von der vorletzten auf die letzte Gleichung zu kommen!?
Ich forme mal um:
[mm] Var(rp)=w^{2}\*16+(1-w)^{2}\*81+2\*w\*(w-1)\*(-0,4)\*0,04\*0,09
[/mm]
= 16 [mm] w^2 [/mm] + [mm] (1-2w+w^2) [/mm] * 81 + [mm] (w^2 [/mm] - w) * 0,00288
= 16 [mm] w^2 [/mm] + 81 [mm] w^2 [/mm] - 162 w + 81 +0,00288 [mm] w^2 [/mm] - 0,00288 w
Das stimmt mit deiner letzten Gleichung fast überein. Problematisch ist hier nur der Faktor 0,00288, der eigentlich 28,8 lauten sollte. Es fehlt also ein Faktor 10000, der diese Umformung ermöglicht. Möglicherweise ist dir beim Aufstellen deiner Gleichung ein Faktor 10000 oder mehrere Faktoren 10 bzw. 100 flöten gegangen!?
(10000 = 10*10*10*10 = 100*100)
>
> Vorab vielen Dank!
LG djmatey
|
|
|
|
|
Hallo,
ja, genau, das war die Problemstellung, ich habe diese Umformung nicht hinbekommen. Tue ich auch auch immernoch nicht, aber beruhigt mich schonmal zu sehen dass es wohl geht. Könntest Du erläutern nach welchen Regeln vorzugehen ist?
Das mit dem abhandengekommen Faktor war mir auch bei meinen Versuchen aufgefallen, da hat mein Dozent wohl einen Schritt weggelassen. Werde ihn morgen mal fragen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:33 Do 14.05.2009 | Autor: | djmatey |
Hallo nochmal,
was genau verstehst du nicht? Die Umformungsschritte?
Meine Umformung umfasst ja drei Zeilen, auf die ich mich ab hier mit 1),2),3) beziehe.
Von 1) nach 2):
Der erste Summand 16 [mm] w^2 [/mm] ist gleich geblieben. Beim zweiten Summanden habe ich die Klammer aufgelöst, dazu sollte man die 2. binomische Formel kennen: [mm] (a-b)^2 [/mm] = [mm] a^2 [/mm] - 2ab + [mm] b^2, [/mm] also hier [mm] (1-w)^2 [/mm] = [mm] 1-2w+w^2
[/mm]
Alternativ kannst du auch (a-b)(a-b) "zu Fuß" ausrechnen, indem du jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multiplizierst.
Im letzten Summanden habe ich alle Zahlen multipliziert und so zusammengefasst:
2*(-0,4)*0,04+0,09 = 0,00288
...und das w in die Klammer gezogen:
w*(w-1) = [mm] w^2 [/mm] - w
Von 2) nach 3):
Klammer auflösen: (a+b)*c = ac+bc
Das ist hier passiert.
Der erste Summand bleibt wieder gleich.
Im zweiten Summanden wird die Klammer aufgelöst, d.h. jeder Summand in der Klammer wird mit 81 multipliziert:
[mm] (1-2w+w^2)*81 [/mm] = 81-162w+81 [mm] w^2
[/mm]
In welcher Reihenfolge du diese drei Summanden nun schreibst, ist egal, denn eine Summe ist kommutativ.
Beim letzten Summanden von 2) wird nun auch eine Klammer aufgelöst, d.h. die 0,00288 wird mit beiden Summanden in der Klammer multipliziert:
[mm] (w^2-w)*0,00288 [/mm] = 0,00288 [mm] w^2 [/mm] - 0,00288w
Ich hoffe, es ist klarer geworden!
LG djmatey
|
|
|
|
|
Ja, superdickes Dankeschön!
|
|
|
|