www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeOptimierungsprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Optimierungsprobleme
Optimierungsprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsprobleme: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:34 Sa 30.06.2007
Autor: Burschid1

Aufgabe
Ein Inhalt von 0,5l soll in einer Dose mit möglichst geringer Oberfläche verstaut werden.
Stelle die Gleichung für den Oberflächeninhalt eines Zylinders auf und ersetze h in dieser Gleichung mit Hilfe der nach h umgestellten Volumenformel.
Untersuche die Oberflächengleichung auf Extremstellen.

Hi Leute,
ich habe da so ein Problemchen mit einer Aufgabe und ich hoffe ihr könnt mir da weiter helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimierungsprobleme: Formeln
Status: (Antwort) fertig Status 
Datum: 20:41 Sa 30.06.2007
Autor: Loddar

Hallo Burschid!


Wie lauten denn die Volumenformel bzw. die Oberflächenformel für einen Kreiszylinder?

Die Volumenformel nach $h \ = \ ...$ umstellen und anschließend in die Oberflächenformel einsetzen. Damit hast Du dann eine Zielfunktion $O(r)_$ , die nur noch vom Radius $r_$ abhängig ist. Für diese Funktion nun eine Extremwertberechnung (= Nullstellen der 1. Ableitung $O'(r)_$ usw.) durchführen.


Gruß
Loddar


Bezug
                
Bezug
Optimierungsprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 01.07.2007
Autor: Burschid1

Hallo!
Danke Lodder.
Ich habe jetzt die Formel umgestellt und bin auf die Nullstelle r=1 gekommen.
Die 2. Ableitung hat mir dann gezeigt das es ein Tiefpunkt ist.
Wie muss ich weiter verfahren?
DANKE IM VORRAUS!

Bezug
                        
Bezug
Optimierungsprobleme: nicht richtig
Status: (Antwort) fertig Status 
Datum: 14:34 So 01.07.2007
Autor: Loddar

Hallo burschid!


Ich komme hier auf ein anderes Ergebnis mit [mm] $r_E [/mm] \ = \ [mm] \bruch{1}{\wurzel[3]{4\pi}} [/mm] \ [mm] \approx [/mm] \ 0.43 \ [dm]$ .

Wie hast Du denn gerechnet? Das mit dem Tiefpunkt stimmt. Anschließend musst Du dann noch die zugehörige Höhe [mm] $h_E$ [/mm] sowie die minimale Oberfläche [mm] $O_{\min} [/mm] \ = \ [mm] O(r_E) [/mm] \ = \ ...$ berechnen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]