www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeOrdnung Torsionsmodul
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Ordnung Torsionsmodul
Ordnung Torsionsmodul < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung Torsionsmodul: Idee
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 05.08.2014
Autor: derriemann

Aufgabe
Sei N der von (4, 5, 6) und (9, 8, 7) erzeugte Untermodul von [mm] \IZ^{3} [/mm]
und M := [mm] \IZ^{3}/N. [/mm]
Bestimmen Sie den Rang von M/T(M) und die Ordnung
von T(M).


Hallo,

also ich kenne die Zerlegung M = F [mm] \oplus [/mm] T(M), mit F [mm] \subset [/mm] M freier Untermodul. Nur ist mir leider nicht ganz klar, wie ich hier jetzt genau vorzugehen habe... Würde mich über Tipps freuen :-)

LG

        
Bezug
Ordnung Torsionsmodul: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Fr 08.08.2014
Autor: MaslanyFanclub

Hallo,

> Sei N der von (4, 5, 6) und (9, 8, 7) erzeugte Untermodul
> von [mm]\IZ^{3}[/mm]
>  und M := [mm]\IZ^{3}/N.[/mm]
> Bestimmen Sie den Rang von M/T(M) und die Ordnung
>  von T(M).
>  
> Hallo,
>  
> also ich kenne die Zerlegung M = F [mm]\oplus[/mm] T(M), mit F
> [mm]\subset[/mm] M freier Untermodul. Nur ist mir leider nicht ganz
> klar, wie ich hier jetzt genau vorzugehen habe... Würde
> mich über Tipps freuen :-)
>  
> LG

Mit [mm] $\psi:\mathbb Z^2 \to \mathbb Z^3, \quad x\mapsto \begin{pmatrix} 4 & 9\\ 5 &8 \\6 &7\end{pmatrix} [/mm] x$ ist [mm] $M=\mathbb Z^3/Im (\psi)$. [/mm]
Berechne dann die Smith-Normalform obiger Matrix.
Siehe auch
https://de.wikipedia.org/wiki/Hauptidealring#Endlich_erzeugte_Moduln:_Invariante_Faktoren

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]