www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung bzgl Restklassenring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ordnung bzgl Restklassenring
Ordnung bzgl Restklassenring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung bzgl Restklassenring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mo 14.04.2014
Autor: elmanuel

Aufgabe
bestimme die Ordnung von [mm] \overline{3} [/mm] der Gruppe [mm] (\IZ_{12},+) [/mm]

Hallo liebe Gemeinde!

Also wegen dem Satz v. Lagrange kommen als Ordnung der Elemente nur folgende Zahlen in Frage: 1,2,3,4,6,12

ausserdem muss für die Ordnung m von 3 gelten

[mm] \overline{3}^m=\overline{1} [/mm]

nun ist aber

[mm] \overline{3}^1= \overline{3} [/mm]

[mm] \overline{3}^2= \overline{9} [/mm]

[mm] \overline{3}^3= \overline{27}= \overline{3} [/mm]

...

also gibt es kein m dass diese Bedingung erfüllt, somit kann ich die Ordnung von  [mm] \overline{3} [/mm] nicht bestimmen

wo liegt mein Denkfehler?

        
Bezug
Ordnung bzgl Restklassenring: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 14.04.2014
Autor: UniversellesObjekt


> wo liegt mein Denkfehler?

Hallo,

darin, dass es um [mm] $(\IZ/12\IZ,+)$, [/mm] nicht um [mm] $(\IZ/12\IZ,\cdot)$ [/mm] geht.

Übrigens ist die Schreibweise [mm] $\IZ_{12}$ [/mm] falsch, selbst wenn dein Buch/Dozent sie verwendet, solltest du dir besser [mm] $\IZ/12\IZ$ [/mm] oder [mm] $\IZ/\langle 12\rangle$, $\IZ/(12)$, $\IZ/12$ [/mm] oder etwas derartiges merken.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Ordnung bzgl Restklassenring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 14.04.2014
Autor: elmanuel


> darin, dass es um [mm](\IZ/12\IZ,+)[/mm], nicht um [mm](\IZ/12\IZ,\cdot)[/mm]
> geht.

ah und mit [mm] \cdot [/mm] geht es nicht weil [mm] (\IZ/12\IZ,\cdot) [/mm] ein ring ist und keine gruppe, oder?

und bzgl + kann ich einfach sagen

[mm] <\overline{3}>=\{\overline{0},\overline{3},\overline{6},\overline{9}\} [/mm]

somit ist die ordnung von [mm] \overline{3} [/mm] gleich 4

korrekt?

Bezug
                        
Bezug
Ordnung bzgl Restklassenring: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Mo 14.04.2014
Autor: UniversellesObjekt


> > darin, dass es um [mm](\IZ/12\IZ,+)[/mm], nicht um [mm](\IZ/12\IZ,\cdot)[/mm]
> > geht.
>  
> ah und mit [mm]\cdot[/mm] geht es nicht weil [mm](\IZ/12\IZ,\cdot)[/mm] ein
> ring ist und keine gruppe, oder?

Nein, ein Monoid. Zum Ring gehören Addition und Multiplikation.

> und bzgl + kann ich einfach sagen
>  
> [mm]<\overline{3}>=\{\overline{0},\overline{3},\overline{6},\overline{9}\}[/mm]
>
> somit ist die ordnung von [mm]\overline{3}[/mm] gleich 4
>  
> korrekt?

Ja. [ok]

Bezug
                                
Bezug
Ordnung bzgl Restklassenring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Mo 14.04.2014
Autor: elmanuel

super, danke universellesObjekt !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]