www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnungen und Nebenklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ordnungen und Nebenklassen
Ordnungen und Nebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungen und Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 23.02.2014
Autor: Infoandi

Aufgabe
Die Einheiten des Rings [mm] \IZ_{40} [/mm] bilden mit der Multiplikation modulo 40 eine Gruppe G.
a) Welche Ordnungen sind für die Untergruppen von G möglich?
c) Bestimmen Sie die Nebenklasse, die die Zahl 3 enthält.

Hallo,
die Ordnung der Gruppe G ist |G|=16 also würde ich mal blind raten die Ordnungen der Untergruppen können nur [mm] \le [/mm] 16 sein und sind Teiler von 16 also 8,4,2,1. Oder muss ich das genauer bestimmen ?

für c)
Muss ich da die Untergruppe von 3 erzeugen und die Elemente von <3> sind dann die Nebenklassen ? Also hier 3,9,27,1.

danke im voraus,
andreas

        
Bezug
Ordnungen und Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 23.02.2014
Autor: hippias


> Die Einheiten des Rings [mm]\IZ_{40}[/mm] bilden mit der
> Multiplikation modulo 40 eine Gruppe G.
>  a) Welche Ordnungen sind für die Untergruppen von G
> möglich?
>  c) Bestimmen Sie die Nebenklasse, die die Zahl 3
> enthält.
>  Hallo,
>  die Ordnung der Gruppe G ist |G|=16

Richtig.

> also würde ich mal
> blind raten die Ordnungen der Untergruppen können nur [mm]\le[/mm]
> 16 sein und sind Teiler von 16 also 8,4,2,1.

Die Liste ist trivialerweise nicht ganz vollstaendig.

> Oder muss ich
> das genauer bestimmen ?

Davon gehe ich aus.

>
> für c)
>  Muss ich da die Untergruppe von 3 erzeugen und die
> Elemente von <3> sind dann die Nebenklassen ? Also hier
> 3,9,27,1.

Ich vermute, dass die Aufgabenstellung unvollstaendig ist, denn eine Nebenklasse wird bezueglich einer Untergruppe gebildet und wenn diese nicht gegeben ist, kann man auch keine Nebenklasse angeben. Eventuell sollst Du die Nebenklasse von $3$ fuer alle moeglichen Untergruppen angeben.

>  
> danke im voraus,
>  andreas


Bezug
                
Bezug
Ordnungen und Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 So 23.02.2014
Autor: Infoandi

Tatsache, in Bezug auf die von der Einheit 7 erzeugte Untergruppe. Also wäre es wahrscheinlich nur die Einheit 9. Da diese ja in <7> und in <3> ist.

Zu den möglichen Ordnungen der Untergruppe:
Da habe ich wohl noch die 16 selbst vergessen. Aber wie soll ich das noch genauer angeben ?

danke für deine Antwort.
Andreas

Bezug
                        
Bezug
Ordnungen und Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Mo 24.02.2014
Autor: hippias


> Tatsache, in Bezug auf die von der Einheit 7 erzeugte
> Untergruppe. Also wäre es wahrscheinlich nur die Einheit
> 9. Da diese ja in <7> und in <3> ist.

Nein. Schlag' nocheinmal nach, was eine Nebenklasse von $U$ in $G$ ist.

>  
> Zu den möglichen Ordnungen der Untergruppe:
>  Da habe ich wohl noch die 16 selbst vergessen.

Genau.

> Aber wie
> soll ich das noch genauer angeben ?

Es bleibt die Frage offen, fuer welche Zahlen es aus Deiner Liste tatsaechlich eine Untergruppe gibt, die diese Ordnung hat. Da hilft wohl nur herumprobieren. Wenn mich nicht alles taeuscht, hast Du aber bereits zu jeder Zahl ausser der $8$ eine passende Untergruppe gefunden. Du koenntest weitere zyklische Untergruppen bilden, dann von $2$ Elementen erzeugte Untergruppen betrachten usw. oder versuchen zu ueberlegen, weshalb $G$ keine Untergruppe der Ordnung $8$ besitzt.  

>
> danke für deine Antwort.
>  Andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]