www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenOrientierung Differentialform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Orientierung Differentialform
Orientierung Differentialform < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orientierung Differentialform: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 01:57 Di 22.01.2013
Autor: kullinarisch

Aufgabe
Zeige, dass folgende Untermannigfaltigkeiten orientierbar ist. Wähle eine Orientierung

(a) Bizylinderkurve C = [mm] \{ (x, y, z) \in \IR^3 | x^2 + y^2 = 1 , y^2 + z^2 = 2 \} [/mm] .

Hallo! Ich habe mir zunächst folgende Abbildung definiert:

[mm] F:\IR^3 \to\IR^2 [/mm]

[mm] F(x,y,z)=(f_1(x,y,z), f_2(x,y,z)) [/mm]

mit [mm] f_1(x,y,z)= x^2 [/mm] + [mm] y^2-1 [/mm] und  [mm] f_2(x,y,z)=y^2 [/mm] + [mm] z^2 [/mm] -2

Dann gilt: F^(-1)(0,0)=C und (0,0) ist regulärer Wert.

Sei im folgenden [mm] \omega_{\IR^3}=dx\wedge dy\wedge [/mm] dz die standart Orientierung im [mm] \IR^3. [/mm] Also für [mm] v_1, v_2, v_3 [/mm] aus [mm] \IR^3 [/mm] gilt  [mm] \omega_{\IR^3}(v_1,v_2v_3)=det(v_1|v_2|v_3) [/mm]

Nach den oben gegebenen Voraussetzungen ist dann nach einem Satz aus unserer Vorlesung folgende 1- Form eine Orientierung auf C:

[mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3} [/mm] mit [mm] \neg [/mm] soll das innere Produkt gemeint sein http://de.wikipedia.org/wiki/Differentialform#Inneres_Produkt

Jetzt habe ich allerdings Probleme [mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3} [/mm] konkret anzugeben. Ich weiß nur wie man allgemein das innere Produkt von nur EINEM Vektor mit einer n-Form angibt, nämlich:

für [mm] v=(v_1,...,v_n)^T [/mm] und [mm] \omega_{\IR^n} [/mm] Standartorientierung

[mm] v\neg\omega_{\IR^n}=\summe_{i=1}^{n}(-1)^{i+1}v_idx_1\wedge ..\wedge \hat dx_i \wedge..\wedge dx_n [/mm] wobei [mm] \hat dx_i [/mm] bedeutet, dass [mm] dx_i [/mm] weggelassen wird. Wenn man dort n-1 Vektoren einsetzt, entspricht das der Determinante nach Entwicklung der ersten Spalte, welche die Einträge von v sind.

Ich schreibe mal meine kleine Rechnung auf:

mit

[mm] grad(f_1)=(2x, [/mm] 2y, [mm] 0)^T [/mm]   und [mm] grad(f_2)=(0, [/mm] 2y, [mm] 2z)^T [/mm] folgt:


[mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3}= [/mm]

[mm] grad(f_2)\neg(2xdy\wedge dz-2ydx\wedge [/mm] dz)=      ???

[mm] grad(f_2)\neg 2xdy\wedge [/mm] dz - [mm] grad(f_2)2ydx\wedge [/mm] dz=         ???

[mm] -2y2xdz+2z2xdy-(-2y2ydx\wedge [/mm] dz+2z2ydx)

wegen -2y2ydx [mm] \wedge [/mm] dz wäre das aber keine 1-Form. Ob die letzten beiden Zeilen richtig sind weiß ich leider nicht. Vielleicht kann mir jmd auf die Sprünge helfen?

Grüße, kulli

Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]