www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonale Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Orthogonale Abbildung
Orthogonale Abbildung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 14.01.2009
Autor: nina1

Aufgabe
Wir betrachten den euklidischen Vektorraum [mm] \IR^2 [/mm] mit dem Standardskalarprodukt [mm] <\vec{x}, \vec{y}>:= [/mm] x1y1 + x2y2

und die Matrix-Abbildung A: [mm] \IR^2 [/mm] -> [mm] \IR^2 [/mm]  
[mm] \vektor{x1 \\ x2} [/mm] -> [mm] \vektor{a11x1 + a12x2 \\ a21x2 + a22x2} [/mm]

Sei [mm] \vec{b} [/mm] = [mm] \vektor{5 \\ -2} [/mm]

Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm] \in \IR [/mm]  sodass
1. der erste Spaltenvektor der Matrix A die Länge 1 hat und in dieselbe Richtung zeigt wie [mm] \vek{b} [/mm]
und 2. die Matrix-Abbildung A orthogonal ist.

Hallo,

meine Frage ist jetzt, wie ich den ersten Spaltenvektor so berechne, dass er in die selbe Richtung zeigt wie [mm] \vec{b}? [/mm]

Ich habe mir gedacht, dass der Betrag von [mm] \vec{b} \wurzel{29} [/mm] ist und demnach ich rechnen muss [mm] 5/\wurzel{29} [/mm] fuer die erste Koordinate und [mm] -2/\wurzel{29} [/mm] fuer die zweite?

Wenn ich den ersten Spaltenvektor habe dann brauche ich beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und oben ein Minus dranmachen. oder?

Danke und Gruss Nina



        
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 14.01.2009
Autor: angela.h.b.


> Wir betrachten den euklidischen Vektorraum [mm]\IR^2[/mm] mit dem
> Standardskalarprodukt [mm]<\vec{x}, \vec{y}>:=[/mm] x1y1 + x2y2
>  
> und die Matrix-Abbildung A: [mm]\IR^2[/mm] -> [mm]\IR^2[/mm]  
> [mm]\vektor{x1 \\ x2}[/mm] -> [mm]\vektor{a11x1 + a12x2 \\ a21x2 + a22x2}[/mm]
>  
> Sei [mm]\vec{b}[/mm] = [mm]\vektor{5 \\ -2}[/mm]
>
> Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm]\in \IR[/mm]  
> sodass
>  1. der erste Spaltenvektor der Matrix A die Länge 1 hat
> und in dieselbe Richtung zeigt wie [mm]\vek{b}[/mm]
>  und 2. die Matrix-Abbildung A orthogonal ist.
>  Hallo,
>  
> meine Frage ist jetzt, wie ich den ersten Spaltenvektor so
> berechne, dass er in die selbe Richtung zeigt wie [mm]\vec{b}?[/mm]
>  
> Ich habe mir gedacht, dass der Betrag von [mm]\vec{b} \wurzel{29}[/mm]
> ist und demnach ich rechnen muss [mm]5/\wurzel{29}[/mm] fuer die
> erste Koordinate und [mm]-2/\wurzel{29}[/mm] fuer die zweite?
>  
> Wenn ich den ersten Spaltenvektor habe dann brauche ich
> beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und
> oben ein Minus dranmachen. oder?
>  
> Danke und Gruss Nina

Hallo,

ja, so ist es.

Und wenn du mithilfe des eleditors noch Indizes setzt, sieht alles schöner aus.

Gruß v. Angela

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]