www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraOrthogonale Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Orthogonale Matrizen
Orthogonale Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 22.05.2007
Autor: robbonaut

Aufgabe
Sei K ein Körper und A eine quadratische Matrix auf K.

Wieviele A's gibt es, die gleichzeitig obere Dreiecksmatrizen und orthogonale Matrizen sind, gibt es auf K ?


Mich verwundert bei der Frage, dass ich eine Anzahl angeben soll.

Nach meinen Überlegungen, gibt es doch nur eine Matrix, welche das erfüllt, und das ist die Einheitsmatrix. Stimmt das?

Ich habe durch Probieren keine andere Matrix gefunden, die obere Dreiecksmatrix ist, und noch dazu orthogonal.

Vielen Dank für Tipps,
robbonaut

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 22.05.2007
Autor: robbonaut

Achso, eine Andere Überlegung von mir war,
dass die Determinante 1 oder -1 sein muss. Kommt man
über die Determinanten vllt. weiter?

Bezug
        
Bezug
Orthogonale Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Di 22.05.2007
Autor: Leopold_Gast

Jede Spalte muß zu den Spalten links von ihr orthogonal sein. So kannst du dich über das Skalarprodukt von Spalte zu Spalte voranarbeiten. Und da jede Spalte auch noch die Länge 1 haben muß, bleiben da nicht mehr viele Möglichkeiten offen. Aber beachte: Außer +1 gibt es auch noch -1!

Bezug
        
Bezug
Orthogonale Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 22.05.2007
Autor: robbonaut

ok, also :

Auf jeden Fall müssen dann auch bei der oberen Dreiecksmatrix die Elemente neben der Diagonale auch Null sein, denn sonst klappt's nicht
mit dem Skalarprodukt der beiden Vektoren, also so etwa

1 0 1    Allerdings: Diese Matrix dann transponiert ist nicht mehr
0 1 0    die Inverse, also gibt es nur zwei Matrizen, die das erfüllen  
0 0 1

quasi

1 0 0
0 1 0
0 0 1

und

-1  0  0
0 -1  0
0  0 -1

?
mfg, robin




Bezug
                
Bezug
Orthogonale Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 22.05.2007
Autor: felixf

Hallo Robin!

> ok, also :
>  
> Auf jeden Fall müssen dann auch bei der oberen
> Dreiecksmatrix die Elemente neben der Diagonale auch Null
> sein, denn sonst klappt's nicht
>  mit dem Skalarprodukt der beiden Vektoren, also so etwa

Genau.

Das kannst du uebrigens recht einfach per Induktion zeigen.

> 1 0 1    Allerdings: Diese Matrix dann transponiert ist
> nicht mehr
>  0 1 0    die Inverse, also gibt es nur zwei Matrizen, die
> das erfüllen  
> 0 0 1
>  
> quasi
>  
> 1 0 0
>  0 1 0
>  0 0 1
>
> und
>
> -1  0  0
>   0 -1  0
>   0  0 -1

Was ist mit [mm] $\pmat{ -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm] etc.? Du kannst jeden Diagonaleintrag frei aus [mm] $\{ 1, -1 \}$ [/mm] waehlen...

LG Felix


Bezug
                        
Bezug
Orthogonale Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Di 22.05.2007
Autor: robbonaut

Ahhh.. danke!!!!!

ich glaub, jetzt bekomm ich alles zusammen.

mfg,
robin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]