www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonalität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Orthogonalität
Orthogonalität < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 04.12.2008
Autor: husbert

Aufgabe
a) Bestimmen sie alle Vektoren in [mm] \IR², [/mm] die auf (2,5) senkrecht stehen.
b) Bestimmen sie alle Vektoren in [mm] \IR³, [/mm] die auf (2,5,1) und (-3,1,4) (gleichzeitig)senkrecht stehen.

Hallo,

zu a)
k*(-5,2) und k*(5,-2) ?

b)
bei b bin ich mir nicht sicher!
Denke das das gleichzeitig bedeutet das beide Vektoren parallel zueinander laufen.

        
Bezug
Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Do 04.12.2008
Autor: fred97


> a) Bestimmen sie alle Vektoren in [mm]\IR²,[/mm] die auf (2,5)
> senkrecht stehen.
>  b) Bestimmen sie alle Vektoren in [mm]\IR³,[/mm] die auf (2,5,1)
> und (-3,1,4) (gleichzeitig)senkrecht stehen.
>  Hallo,
>  
> zu a)
>  k*(-5,2) und k*(5,-2) ?

O.K.


>  
> b)
>  bei b bin ich mir nicht sicher!
> Denke das das gleichzeitig bedeutet das beide Vektoren
> parallel zueinander laufen.

Das "gleichzeitig" vergiss mal. Du sollst alle Vektoren bestimmen, die auf (2,5,1) und (-3,1,4) senkrecht stehen.

Tipp: Kreuzprodukt.

FRED


Bezug
                
Bezug
Orthogonalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Do 04.12.2008
Autor: husbert

Vielen Dank fred97,

Nach einem Crashkurs in Kreuzprodukt hab ich (19,-11,17)
rausbekommen bei (2,5,1)x(-3,1,4).

Also ist die Lösung k*(19,-11,17) ?

Bezug
                        
Bezug
Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 04.12.2008
Autor: fred97

So ist es

FRED

Bezug
                                
Bezug
Orthogonalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 Do 04.12.2008
Autor: husbert

Klasse, danke. :D

gruß bert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]