www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesOrthonormalb.,quadrat ergänzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Orthonormalb.,quadrat ergänzen
Orthonormalb.,quadrat ergänzen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 06.01.2016
Autor: sissile

Aufgabe
Hallo,
In einem Beweis verstehe ich eine Zeile nicht. Im Buch steht, dass es sich um quadratische Ergänzung handelt. Jedoch komme ich nicht dahinter, wie ich das genau umwandle.

Es geht um den Satz:
Sei X ein Vektorraum. Sei [mm] \{\phi\}_{i=1}^n [/mm] eine Orthonormalbasis vom endlichdimensionalen Unterraum [mm] X_n \subset [/mm] X.
Für f [mm] \not\in X_n [/mm] ist [mm] f_n [/mm] = [mm] \sum_{i=1}^n [/mm] < [mm] \phi_i, [/mm] f> [mm] \phi_i [/mm] die Bestapproximation an f aus [mm] X_n: [/mm]
[mm] ||f-f_n|| [/mm] < ||f-g||

Der nicht verständliche Schritte:
Wir haben gezeigt ||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - 2 [mm] \sum_{j=1}^n Re(\tilde{\alpha_j} \overline{\alpha_j}) [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}|^2 [/mm] wobei [mm] \alpha_j= <\phi_j,f> [/mm] ist.
Wie folgt daraus:
||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - [mm] \sum_{i=1}^n|\alpha_i|^2 [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}- \alpha_i|^2. [/mm]



Liebe Grüße,
sissi

        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wir zäunen das mal von hinten auf.....

[mm] $-|a_i|^2 [/mm] + [mm] |\tilde{a_i} [/mm] - [mm] a_i|^2$ [/mm]
$= [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i} [/mm] - [mm] a_i) [/mm] + [mm] Im^2(\tilde{a_i} [/mm] - [mm] a_i)$ [/mm]
$=  [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] + [mm] Re^2(a_i) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] + [mm] Im^2(a_i)$ [/mm]
$= [mm] Re^2(\tilde{a_i}) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $
$= [mm] |\tilde{a_i}|^2 [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $

Verwenden wir nun: [mm] $Re(a_i) [/mm] = [mm] Re(\overline{a_i})$ [/mm] sowie [mm] $Im(a_i) [/mm] = [mm] -Im(\overline{a_i})$, [/mm] erhalten wir erstmal:

[mm] $=|\tilde{a_i}|^2 [/mm] - [mm] 2(Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i}))$ [/mm]

und daraus mit [mm] $Re(\tilde{a_i}\overline{a_i}) [/mm] = [mm] Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i})$ [/mm]

[mm] $=|\tilde{a_i}|^2 [/mm]  - [mm] 2Re(\tilde{a_i}\overline{a_i}) [/mm] $

Gruß,
Gono

Bezug
                
Bezug
Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 06.01.2016
Autor: sissile

Hallo,
Danke für die Auschlüsselung und die Mühe!
Ich war aber eher daran interessiert wie man zu dem Schritt mitels quadratischer Ergänzung kommt. Falls wer in diese Richtung noch Ideen hat wäre ich dankbar!


Vielen Dank,
Sissi

Bezug
                        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wenn du das von unten nach oben liest (was im Beweis ja gemacht wird) ist das doch die quadratische Ergänzung!
Was meinst du, was beim dritten Gleichheitszeichen von oben passiert, wenn man es von unten liest und wo die quadratischen Terme herkommen?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]