www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthonormalisierung von Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Orthonormalisierung von Basis
Orthonormalisierung von Basis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalisierung von Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 So 24.06.2007
Autor: insomniac279

Aufgabe
Für n [mm] \in \IN [/mm] sei Vn [mm] \subseteq \IR[T] [/mm] der Untervektorraum aller Polynome vom Grad [mm] \le [/mm] n. Zeigen Sie, dass durch <f,g>= [mm] \integral_{-1}^{1}{f(t)g(t) dt}, [/mm] f, g [mm] \in [/mm] Vn,  ein positiv definites Skalarprodukt auf Vn definiert ist.
Wenden Sie das Schmidtsche Orthonormalisierungverfahren auf die Basis 1, T, T2 an.

Den ersten Teil der Aufgabe (das Skalarprodukt zeigen), habe ich gelöst und nun scheitere ich an am Orthonormalisierungverfahren. An sich verstehe ich es, habe auch bereits eine andere Aufgabe mit demselben gelöst aber hier klappt es einfach nicht. Zunächst habe ich versucht, die Basis zu orthogonalisieren, das normieren sollte folgen. Dann habe ich als erstes Element in meiner neuen (noch nicht normierten) Basis 1. Wenn ich nun versuche, T zu orthogonalisieren, bekomme ich 0 raus und das kann ja irgendwie nicht stimmen. Jetzt bin ich verwirrt und bitte um Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthonormalisierung von Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 24.06.2007
Autor: Vreni

Hallo insomniac279,

ich habe deine Aufgabe jetzt nicht gerechnet, aber soweit ich weiß geht man beim Schmidtschen Orthogonalisierungsverfahren von n Basisvektoren [mm] u_1...u_n [/mm] zu de ONB [mm] v_1...v_n [/mm] folgendermaßen vor:
1. Ersten Basisvektor [mm] u_1 [/mm] normieren [mm] \rightarrow v_1 [/mm]
2. den nächsten Basisvektor [mm] u_i [/mm] auf alle bisher berechneten orthogonalen Basisvektoren [mm] v_1 ...v_{i-1} [/mm] projeziern und die Projektionen von [mm] u_i [/mm] abziehen
3. Schritt 2 für alle Basisvektoren [mm] u_i [/mm] wiederholen
Also an deiner Stelle würde ich den Basisvektor 1 erstmal normieren und dann weiterrechnen, theoretisch müsste es dann klappen.

Gruß,
Vreni

Bezug
        
Bezug
Orthonormalisierung von Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 So 24.06.2007
Autor: schachuzipus

Hallo Sabine,

> Für n [mm]\in \IN[/mm] sei Vn [mm]\subseteq \IR[T][/mm] der
> Untervektorraum aller Polynome vom Grad [mm]\le[/mm] n. Zeigen Sie,
> dass durch <f,g>= [mm]\integral_{-1}^{1}{f(t)g(t) dt},[/mm] f, g [mm]\in[/mm]
> Vn,  ein positiv definites Skalarprodukt auf
> Vn definiert ist.
>  Wenden Sie das Schmidtsche Orthonormalisierungverfahren
> auf die Basis 1, T, T2 an.
>  Den ersten Teil der Aufgabe (das Skalarprodukt zeigen),
> habe ich gelöst und nun scheitere ich an am
> Orthonormalisierungverfahren. An sich verstehe ich es, habe
> auch bereits eine andere Aufgabe mit demselben gelöst aber
> hier klappt es einfach nicht. Zunächst habe ich versucht,
> die Basis zu orthogonalisieren, das normieren sollte
> folgen. Dann habe ich als erstes Element in meiner neuen
> (noch nicht normierten) Basis 1.  [daumenhoch] Wenn ich nun versuche, T
> zu orthogonalisieren, bekomme ich 0 raus [notok] und das kann ja
> irgendwie nicht stimmen. Jetzt bin ich verwirrt und bitte
> um Hilfe.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Denke daran, dass du hier beim Gram-Schmidt-Algo das oben explizit definierte Skalarprodukt mit dem Integral für die Rechnungen verwenden musst.

Wenn du also den 2ten othogonalen Basisvektor berechnen willst, setze so an:

[mm] \{v_1,v_2,v_3\}=\{1,T,T^2\} [/mm]

[mm] u_1:=v_1=1 [/mm]



[mm] $u_2:=v_2-\frac{\langle v_2,u_1\rangle}{\langle u_1,u_1\rangle}\cdot{}u_1=T-\frac{\int\limits_{-1}^1{(T\cdot{}1)dT}}{\int\limits_{-1}^1{(1\cdot{}1)dT}}\cdot{}1=....=T-0=T$ [/mm]

Berechne dann [mm] v_3 [/mm]

Dann am Schluss noch normieren - auch bzgl. dieses Skalarproduktes(!!)

LG

schachuzipus

Bezug
                
Bezug
Orthonormalisierung von Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 So 24.06.2007
Autor: insomniac279

Alles klar, genau da lag mein Problem wie ich sehe. Hätt man sich ja irgendwie denken können.. [lichtaufgegangen]. Hab jetzt durchgerechnet und nachkontrolliert, hab's jetzt wohl richtig. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]