www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungOrtskurven
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ortskurven
Ortskurven < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 18.09.2006
Autor: Matrix08

Aufgabe
Bestimmen Sie die Ortskurven der Extrempunkte von

a)f b (x) = bx²+(b-1)*x+b

b)f c (x) = -x² + 2cx - 0.75c² - 0.5c + 1.25

c)f d (x) = x³ + dx² - x - d

Für Aufgabe a) habe ich versucht die 1. Ableitung zu berechnen:

f'(x) = 2bx + b - 1
(Ich habe dann vorausgesetzt dass sie stimmt und sie gleich 0 gesetzt um die Extrempunkte zu haben):

2bx + b - 1 = 0  / : b  (wahrscheinlich ist die Ableitung schon falsch, oder?)
Ab hier wusste ich nicht weiter... :S


Bei Aufgaben b und c hatte ich das gleiche Problem; wegen der Parameter habe ich mich wahrscheinlich schon bei den Ableitungen vertan und deshalb kein Ergebnis bekommen.
Wäre super wenn mir jemand helfen könnte!!

Danke!! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ortskurven: MatheBank!
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 18.09.2006
Autor: informix

Hallo Matrix und [willkommenmr],
kennst du die grundsätzliche Vorgehensweise, um die MBOrtskurven (<-- click it!) einer Funktion zu ermitteln?

> Bestimmen Sie die Ortskurven der Extrempunkte von
>
> a)f b (x) = bx²+(b-1)*x+b
>  
>  Für Aufgabe a) habe ich versucht die 1. Ableitung zu
> berechnen:
>  
> f'(x) = 2bx + b - 1

[ok]

>  (Ich habe dann vorausgesetzt dass sie stimmt und sie
> gleich 0 gesetzt um die Extrempunkte zu haben):
>  
> 2bx + b - 1 = 0  / : b  (wahrscheinlich ist die Ableitung
> schon falsch, oder?)

Nur Mut, fast alles ist richtig!

$f'(x) = 2bx + b - 1 = 0$ nach [mm] x_E [/mm] auflösen:
[mm] $x_E [/mm] = [mm] \bruch{1-b}{2b}$ [/mm]
Jetzt den y-Wert der Extremstelle bestimmen: [mm] $f(\bruch{1-b}{2b})$ [/mm]
er hängt - wie [mm] x_E [/mm] - auch von b ab.

Nun wie bei MBOrtskurve beschrieben den Parameter b eliminieren und schon hast du den Funktionsterm der Ortskurve.

>  Ab hier wusste ich nicht weiter... :S
>  
>
> Bei Aufgaben b und c hatte ich das gleiche Problem; wegen
> der Parameter habe ich mich wahrscheinlich schon bei den
> Ableitungen vertan und deshalb kein Ergebnis bekommen.
>  Wäre super wenn mir jemand helfen könnte!!

Jetzt bist du dran! Zeig uns deine Rechnung, damit wir sie überprüfen können.

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]