Ostereier < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:41 Di 20.05.2014 | Autor: | Mathics |
Aufgabe | Der Osterhase möge zwei Eier von den Farben rot, blau, grün, gelb und braun haben, die alle ungeordnet in einem Korb liegen. Er stellt ein Osternest zusammen, indem er zufällig drei Eier aus dem Korb nimmt.Mit welcher Wahrscheinlichkeit haben alle drei gezogene Eier eine unterschiedliche Farbe? |
Hallo,
mein Ansatz würde lauten:
Wir haben insgesamt [mm] \vektor{10 \\ 3} [/mm] = 120 Möglichkeiten 3 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge aus dem Korb zu ziehen. Hier könnten auch Kugeln mit gleicher Farbe vorkommen.
Ich könnte auch einfach sagen: Es gibt 10*9*8 = 720 Möglichkeiten und da die Reihenfolge ja nicht berücksichtig werden sollt durch 3!, also 120 Möglichkeiten.
Hier fängt aber jetzt bei mir eine Denkblockade an, ich hoffe, ich kann das im Folgenden richtig erklären.
Undzwar könnte ich einmal sagen:
Für die erste Kugel gibt es 10 Möglichkeiten. Danach ziehe ich die rote Kugel und nun gibts nur noch 8 Möglichkeiten (da rot mit 2 Kugeln insgesamt und einer gezogenen) nicht mehr in Frage kommt. Nach der z.B grünen Kugel, gibts dann noch entsprechend 6 Kugeln. Also 10*8*6 Möglichkeiten, wobei die Reihenfolge keine Rolle spielt, daher durch 3! und wir erhalten als Ergebnis 80/120 = 2/3.
Nun wollte ich das auch ganz gerne mit dem Bionomialkoeffizienten berechnen. Die erste Idee mit [mm] \vektor{10 \\ 3}= [/mm] 120 Möglichkeiten scheint ja schon mal ganz gut zu sein.
Danach hätte ich gerechnet: [mm] \vektor{10 \\ 1} [/mm] * [mm] \vektor{8 \\ 1} [/mm] * [mm] \vektor{6 \\ 1} [/mm] .Da hätte ich aber die Wahrscheinlichkeit 480/120 = 4 raus und das kann ja nicht sein.
Wo mache ich aber den entscheidenden Denkfehler?
LG
Mathics
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:23 Di 20.05.2014 | Autor: | Fulla |
Hallo Mathics!
> Der Osterhase möge zwei Eier von den Farben rot, blau,
> grün, gelb und braun haben, die alle ungeordnet in einem
> Korb liegen. Er stellt ein Osternest zusammen, indem er
> zufällig drei Eier aus dem Korb nimmt.Mit welcher
> Wahrscheinlichkeit haben alle drei gezogene Eier eine
> unterschiedliche Farbe?
> Hallo,
>
> mein Ansatz würde lauten:
>
> Wir haben insgesamt [mm]\vektor{10 \\ 3}[/mm] = 120 Möglichkeiten 3
> Kugeln ohne Zurücklegen und ohne Berücksichtigung der
> Reihenfolge aus dem Korb zu ziehen. Hier könnten auch
> Kugeln mit gleicher Farbe vorkommen.
>
> Ich könnte auch einfach sagen: Es gibt 10*9*8 = 720
> Möglichkeiten und da die Reihenfolge ja nicht
> berücksichtig werden sollt durch 3!, also 120
> Möglichkeiten.
>
> Hier fängt aber jetzt bei mir eine Denkblockade an, ich
> hoffe, ich kann das im Folgenden richtig erklären.
>
> Undzwar könnte ich einmal sagen:
>
> Für die erste Kugel gibt es 10 Möglichkeiten. Danach
> ziehe ich die rote Kugel und nun gibts nur noch 8
> Möglichkeiten (da rot mit 2 Kugeln insgesamt und einer
> gezogenen) nicht mehr in Frage kommt. Nach der z.B grünen
> Kugel, gibts dann noch entsprechend 6 Kugeln. Also 10*8*6
> Möglichkeiten, wobei die Reihenfolge keine Rolle spielt,
> daher durch 3! und wir erhalten als Ergebnis 80/120 = 2/3.
> Nun wollte ich das auch ganz gerne mit dem
> Bionomialkoeffizienten berechnen. Die erste Idee mit
> [mm]\vektor{10 \\ 3}=[/mm] 120 Möglichkeiten scheint ja schon mal
> ganz gut zu sein.
>
> Danach hätte ich gerechnet: [mm]\vektor{10 \\ 1}[/mm] * [mm]\vektor{8 \\ 1}[/mm]
> * [mm]\vektor{6 \\ 1}[/mm] .Da hätte ich aber die
> Wahrscheinlichkeit 480/120 = 4 raus und das kann ja nicht
> sein.
>
> Wo mache ich aber den entscheidenden Denkfehler?
Du machst zunächstmal einen Rechenfehler: [mm]\binom{10}{1}*\binom{8}{1}*\binom{6}{1}=80[/mm].
Das würde dann zwar stimmen, aber du hast ja mit [mm]\binom{10}{1}=10[/mm] eigentlich nur die Zahlen durch Binomialkoeffizienten ersetzt...
EDIT: Denkfehler meinerseits. Siehe andere Antwort.
Versuch mal folgenden Weg:
Wähle zuerst 3 der 5 verschiedenen Farben aus und wähle dann jeweils aus den 2 gleichfarbigen Eiern eines aus.
Lieben Gruß,
Fulla
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:04 Di 20.05.2014 | Autor: | Mathics |
Hallo,
> Du machst zunächstmal einen Rechenfehler:
> [mm]\binom{10}{1}*\binom{8}{1}*\binom{6}{1}=80[/mm].
> Das würde dann zwar stimmen, aber du hast ja mit
> [mm]\binom{10}{1}=10[/mm] eigentlich nur die Zahlen durch
> Binomialkoeffizienten ersetzt...
Ergibt das denn nicht 10*8*6=480 ?
Ist denn quasi meine Denkweise mit "ich wähle von 10 Kugeln eine aus, und dann von 8 wieder eine und dann von 6, ohne aber dass die Reihenfolge berücksichtigt wird" korrekt? Ich frage mich dann aber, wieso ich nach dem Denkmuster 4 als Wahrscheinlichkeit erhalte.
LG
Mathics
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:07 Di 20.05.2014 | Autor: | Fulla |
> Hallo,
>
> > Du machst zunächstmal einen Rechenfehler:
> > [mm]\binom{10}{1}*\binom{8}{1}*\binom{6}{1}=80[/mm].
> > Das würde dann zwar stimmen, aber du hast ja mit
> > [mm]\binom{10}{1}=10[/mm] eigentlich nur die Zahlen durch
> > Binomialkoeffizienten ersetzt...
>
> Ergibt das denn nicht 10*8*6=480 ?
Doch tut es, sorry, war mein Fehler.
> Ist denn quasi meine Denkweise mit "ich wähle von 10
> Kugeln eine aus, und dann von 8 wieder eine und dann von 6,
> ohne aber dass die Reihenfolge berücksichtigt wird"
> korrekt? Ich frage mich dann aber, wieso ich nach dem
> Denkmuster 4 als Wahrscheinlichkeit erhalte.
Weil du dieselbe Überlegung machst, wie in deinem ersten Versuch, aber vergisst, durch 3! zu teilen.
Lieben Gruß,
Fulla
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:05 Di 20.05.2014 | Autor: | abakus |
> Der Osterhase möge zwei Eier von den Farben rot, blau,
> grün, gelb und braun haben, die alle ungeordnet in einem
> Korb liegen. Er stellt ein Osternest zusammen, indem er
> zufällig drei Eier aus dem Korb nimmt.Mit welcher
> Wahrscheinlichkeit haben alle drei gezogene Eier eine
> unterschiedliche Farbe?
Hallo,
das erste Ei wird ins Nest gelegt.
Von den übrigen 9 Eiern hat nur eins die selbe Farbe, 8 Eier haben eine andere.
Die Wahrscheinlichkeit, dass die ersten beiden Eier verschiedene Farben haben, ist also 8/9.
Das dritte Ei darf weder die Farbe des ersten noch die von zweiten Ei haben...
Gruß Abakus
> Hallo,
>
> mein Ansatz würde lauten:
>
> Wir haben insgesamt [mm]\vektor{10 \\ 3}[/mm] = 120 Möglichkeiten 3
> Kugeln ohne Zurücklegen und ohne Berücksichtigung der
> Reihenfolge aus dem Korb zu ziehen. Hier könnten auch
> Kugeln mit gleicher Farbe vorkommen.
>
> Ich könnte auch einfach sagen: Es gibt 10*9*8 = 720
> Möglichkeiten und da die Reihenfolge ja nicht
> berücksichtig werden sollt durch 3!, also 120
> Möglichkeiten.
>
> Hier fängt aber jetzt bei mir eine Denkblockade an, ich
> hoffe, ich kann das im Folgenden richtig erklären.
>
> Undzwar könnte ich einmal sagen:
>
> Für die erste Kugel gibt es 10 Möglichkeiten. Danach
> ziehe ich die rote Kugel und nun gibts nur noch 8
> Möglichkeiten (da rot mit 2 Kugeln insgesamt und einer
> gezogenen) nicht mehr in Frage kommt. Nach der z.B grünen
> Kugel, gibts dann noch entsprechend 6 Kugeln. Also 10*8*6
> Möglichkeiten, wobei die Reihenfolge keine Rolle spielt,
> daher durch 3! und wir erhalten als Ergebnis 80/120 = 2/3.
>
> Nun wollte ich das auch ganz gerne mit dem
> Bionomialkoeffizienten berechnen. Die erste Idee mit
> [mm]\vektor{10 \\ 3}=[/mm] 120 Möglichkeiten scheint ja schon mal
> ganz gut zu sein.
>
> Danach hätte ich gerechnet: [mm]\vektor{10 \\ 1}[/mm] * [mm]\vektor{8 \\ 1}[/mm]
> * [mm]\vektor{6 \\ 1}[/mm] .Da hätte ich aber die
> Wahrscheinlichkeit 480/120 = 4 raus und das kann ja nicht
> sein.
>
> Wo mache ich aber den entscheidenden Denkfehler?
>
>
> LG
> Mathics
|
|
|
|