www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10PI Annäherung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - PI Annäherung
PI Annäherung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PI Annäherung: Quadrat als Startwert
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:32 Fr 17.11.2006
Autor: oemil

Aufgabe
Das Verfahren des Archimedes zu Näherung von [mm] \pi, [/mm] aber als Startwert kein 6-Eck sondern ein Quadrat.

Hallo,

mein erster Post hier! Ich bin mir nicht sicher, ob ich im richtigen Bereich gepostet habe, da mein Problem etwas komischer ist.

Wir haben in der Schule das Verfahren des Archimedes benutzt um [mm] \pi [/mm] näherungsweiße zu bestimmen, als Startwert wurde ein Hexagon genommen:


[mm] \pi \approx [/mm]  n * [mm] s_{2n} [/mm] = n * [mm] \wurzel{2-2*\wurzel{1-\bruch{s_{n}^{2}}{4}}} [/mm]
Der Umfang des 2n-Ecks 2n * [mm] S_{2n} [/mm] ist eine Näherung für den Kreisumfang [mm] 2r\pi [/mm] = [mm] 2\pi [/mm]   (r = 1LängenEinhait, also 1)

Soweit so gut, alles verstanden.
Ich habe für dieses Problem auch in C# einen Algorithmus programmiert, der die Formel ausrechnet.

Dann haben wir das ganze unanfälliger für Rundungsfehler gemacht:
[mm] s_{2n]} [/mm] = [mm] \wurzel{2 * \wurzel{4 - s_{n}^{2}}} [/mm]
[mm] s_{n} [/mm] war das Vorergebniss, also das Vieleck mit halbsoviel Ecken wie das neue.

Bis hierhin alles klar, ich habe das wirklich kapiert^^
Mit dem hab ich dann meinen Code gemacht:
                Double[] PI = new double[Anzahl + 1];
                Double[] Eck = new double[Anzahl + 1];
                PI[0] = 3;
                Eck[0] = 6;
                double Ergebniss = System.Math.Sqrt(2 - System.Math.Sqrt(3));
                double Ecken = 12;
                PI[1] = ((Ergebniss * Ecken) / 2);
                Eck[1] = 12;
                for (int i = 2; i <= Anzahl; i++)
                {
                    Ecken *= 2;
                    Eck[i] = Ecken;
                    Ergebniss = Ergebniss / (System.Math.Sqrt(2 + System.Math.Sqrt(4 - System.Math.Pow(Ergebniss, 2d))));
                    PI[i] = Ergebniss * Ecken / 2;
                }

Der geht auch wunderbar.

Nun sollen wir das ganze am Anfang mit 4 Ecken und dann halt Vielfache von 4 machen. Mir geht es nur um die Theorie und die Mathematik. Den Code mach ich selber, da das hier auch das falsche Forum ist ;-)
Ich würde nur gern wissen, wie das funktionieren soll, da ich wirklich nicht drauf komme....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank
Emanuel

        
Bezug
PI Annäherung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Fr 17.11.2006
Autor: otto.euler

Es funktioniert genauso. Nur der Startwert ist kein einbeschriebenes gleichseitiges Dreieck, sondern ein einbeschriebenes Quadrat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]