www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenParallelogramm
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Parallelogramm
Parallelogramm < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelogramm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Sa 07.02.2009
Autor: Mandy_90

Aufgabe
Das Viereck ABCD ist genau dann ein Parallelogramm,wenn die Vektorengleichungen [mm] \overrightarrow{AB}=\overrightarrow{DC} [/mm] und [mm] \overrightarrow{AD}=\overrightarrow{BC} [/mm] gelten.Begründen Sie diese Aussage anschaulich.Prüfen Sie dann,ob es sich bei dem folgenden Viereck ABCD um ein Parallelogramm handelt.
a) A(-2/1), B(4/-1), C(7/2), D(1/4)

Hallo zusammen^^

Ich hab diese Aufagbe gemacht,bin jedoch auf ein kleines Problemchen gestoßen.
Also anschaulich könnte man das so begründen,dass ein Parallelogramm nur dann entstehen kann,wenn [mm] \overrightarrow{AB}=\overrightarrow{DC} [/mm] und [mm] \overrightarrow{AD}=\overrightarrow{BC} [/mm] gilt,da die Seiten sonst nicht parallel sindAber das steht eigentlich schon in der Aufgabenstellung,wie soll man das denn sonst begründen???

Und ich hab mir dieses Viereck mal aufgezeichnet und es ist ein Parallelogramm,aber wenn ich die Vektoren berechne,sind sie nicht ganz gleich,also [mm] \overrightarrow{AB}=\vektor{6 \\ -2},\overrightarrow{DC}=\vektor{6 \\ -2},die [/mm] sind schon mal gleich.
[mm] \overrightarrow{AD}=\vektor{-3 \\ -3}, \overrightarrow{BC}=\vektor{3 \\ 3}.Die [/mm] beiden sind aber nicht gleich,das Vorzeichen ist anders,aber kann es dann trotzdem ein Parallelogramm sein?Wenn ich es nämlich aufzeichne sieht es aus wie eins.Aber in der Aufgabe steht ja was anderes,das versteh ich nicht so ganz???

vielen dank für eure Hilfe

lg

        
Bezug
Parallelogramm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 07.02.2009
Autor: noobo2

Hallo,
man kann deine Aufgabe allgemein beweisen. Jetzt zum Beispiel für den [mm] R^2. [/mm]
Sobald AB=DC ist muss Auch AD=BC gelten. Einen Beweis findets du hier :
http://www.uni-protokolle.de/foren/viewt/148915,15.html
Zu deiner zweiten Frage :
Es ist bei Paralellogrammen meist ein bisschen schwer. Wenn du schon mal die richtigen Vektoren für AB und DC hast heisst das ( in deinen Fall), dass A über B liegt und D über C. Würdest du beispielsweise AB und CD berechnen so würdest du einmal kommen auf [mm] \pmat{ 6 \\ -2} [/mm] und dann auf [mm] \pmat{ -6 \\ 2} [/mm] letzteres nennt man den so genannten Gegenvektor. Das ist nicht schlimm, da es der gleiche Vektor nur in eine andere Richtung ist. Insofern ist es ein Parallelogramm, du musst nur gucken, dass du wenn du die zweite Seite ausrechnest also AD und BC nicht einmal den hohen Punkt vom Tiefen und einmal den Tiefen Puntk vom hohen abziehst, dann passiert nämlich das worüber du dich jetzt gewundert hast. Insgesamt musst du ja das Paralelogramm erst zeichen um zu sehen ob A jetzt mit C oder mit D verbunden ist , aber das hast du ja bereits gemacht.

klar jetzt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]