www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungParallelogrammformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Parallelogrammformel
Parallelogrammformel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelogrammformel: Beweis mit Vektoren
Status: (Frage) beantwortet Status 
Datum: 11:52 So 22.10.2006
Autor: Phoney

Guten Morgen.

Wir sollen die Parallelogramm-Formel [mm] c^2+d^2=2a^2+2b^2 [/mm] mit Hilfe der Vektorrechnung beweisen.

Wenn ich mir ein Parallelogramm aufmale, dann ergibt sich, dass die Diagonalen c und d sich wie folgt darstellen lassen

1) [mm] \vec{c} [/mm] = [mm] \vec{a}+\vec{b} [/mm]
2) [mm] \vec{d} [/mm] = [mm] \vec{-a}+\vec{b} [/mm]

Das hilft mir jetzt aber überhaupt nicht weiter

Stelle ich die zweite nach [mm] \vec{b} [/mm] um, erhalte ich [mm] \vec{b} [/mm] = [mm] \vec{a}+\vec{d} [/mm]

Dann setze ich das in die erste ein [mm] \vec{c}= \vec{a}+\vec{a}+\vec{d} [/mm] = [mm] 2\vec{a}+\vec{d} [/mm]

Wenn ich nun noch versuche, ein Quadrat hineinzubringen, erhalte ich  [mm] $\vec{c}^2= 4\vec{a}^2+4\vec{a}*\vec{d}+\vec{d}^2$ [/mm]

Dann teile ich alles durch 4
[mm] $\br{\vec{c}^2}{4}= \vec{a}^2+\vec{a}*\vec{d}+\br{\vec{d}^2}{4}$ [/mm]

So kann ich auch kein b einsetzen. Also ist das oben alles falsch.

Wie geht das also nun? Bin am verzweifeln......

Gruß
Phoney

        
Bezug
Parallelogrammformel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 So 22.10.2006
Autor: leduart

Hallo Phoney
Du siehst den Wald vor lauter Bäumen nicht!
Du warst schon fast fertig:

>  
> 1) [mm]\vec{c}[/mm] = [mm]\vec{a}+\vec{b}[/mm]
> 2) [mm]\vec{d}[/mm] = [mm]\vec{-a}+\vec{b}[/mm]
>  
> Das hilft mir jetzt aber überhaupt nicht weiter

Genau das hilft weiter: quadriere  die 2 Gleichungen mal, dh linke Seite mal linker, rechte seite mal rechter.
Dann die 2 Gl. addieren und HURRA!  
Gruss leduart

Bezug
                
Bezug
Parallelogrammformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 So 22.10.2006
Autor: Phoney

Auweija, doch so einfach. Danke, dass du mir das Brett vorm Kopp wegnimmst.

Vielen dank!!!

Schönen Sonntag wünsche ich dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]