www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationParameterabhängige Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Parameterabhängige Integrale
Parameterabhängige Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterabhängige Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 So 21.09.2008
Autor: yanca

Aufgabe
Löse das Parameterintegral :
[mm] \integral_{1}^{2} (\bruch{x}{t} [/mm] - [mm] \bruch{1}{t^3})* e^{x*t^2} [/mm]  dt  

Hallo,
das ist das Integral was ich lösen will. Soweit krieg ich das auch hin, ich weiß nur nicht wie ich am Ende die Integrationskonstante bestimmen kann.
Also ich habe die Funktion nach x abgeleitet und dann mit den Grenzen nach dt integriert. Von dem dadurch entstandenen F' habe ich dann die Stammfunktion gebildet. Als Ergebnis bekomme ich
[mm] \bruch{1}{8}*e^{4*x} [/mm] - [mm] \bruch{1}{2}*e^x [/mm] +C
Ich denke mal um an C zu kommen muss ich jetzt Randbedingungen aufstellen, aber welche? In der Aufgabe ist nichts weiter angegeben.

danke, viele Grüße, Yanca

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Parameterabhängige Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 So 21.09.2008
Autor: Somebody


> Löse das Parameterintegral :
>  [mm]\integral_{1}^{2} (\bruch{x}{t}[/mm] - [mm]\bruch{1}{t^3})* e^{x*t^2}[/mm]
>  dt  
> Hallo,
>  das ist das Integral was ich lösen will. Soweit krieg ich
> das auch hin, ich weiß nur nicht wie ich am Ende die
> Integrationskonstante bestimmen kann.
>  Also ich habe die Funktion nach x abgeleitet und dann mit
> den Grenzen nach dt integriert. Als Ergebnis bekomme ich
>  [mm]\bruch{1}{8}*e^{4*x}[/mm] - [mm]\bruch{1}{2}*e^x[/mm] +C
>  Ich denke mal um an C zu kommen muss ich jetzt
> Randbedingungen aufstellen, aber welche?

Wenn Du den Ansatz [mm]\bruch{1}{8}*e^{4*x} -\bruch{1}{2}*e^x+C[/mm] für den Wert dieses Integrals hast, dann kannst Du $C$ aus der Bedingung bestimmen, dass das Integral und Dein Ansatz für $x=0$ übereinstimmen müssen, dass also gilt:

[mm]\integral_{1}^{2} (\bruch{0}{t}[/mm] - [mm]\bruch{1}{t^3})* e^{0*t^2}\, dt=\bruch{1}{8}*e^{4*0} -\bruch{1}{2}*e^0+C[/mm]



Bezug
                
Bezug
Parameterabhängige Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 So 21.09.2008
Autor: yanca

ok, also bekomme ich dann ja [mm] \bruch{-3}{8} [/mm] = [mm] \bruch{-3}{8}+C, [/mm] also ist C in diesem Fall null.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]