www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParametergleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Parametergleichung
Parametergleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametergleichung: Aufgabe,Tipp
Status: (Frage) beantwortet Status 
Datum: 19:56 Mi 05.01.2011
Autor: Neunstein

Aufgabe
Gegeben ist die Gerade g mit dem Stützvektor [mm] \vec{p} [/mm] und dem Richtungsvektor [mm] \vec{u}. [/mm] Geben Sie jeweils eine Parametergleichung von g mit einem von [mm] \vec{p} [/mm] verschiedenen Stützvektor bzw. von u verschiedenen Richtungsvektor an.
a) [mm] \vec{p}= \pmat{ 0 \\ 3 \\ -9 } [/mm] ; [mm] \vec{u}=\pmat{ 1 \\ 2 \\ 3 } [/mm]
___________________________________________________________
Geben Sie zu den Geraden durch die Punkte A und B und C sowie B und C jeweils eine Parametergleichung an.

A(8|7|6) B(-2|-5|-1) C(0|-4|-3)

Meine Frage lautet was ist eine Parametergleichung und wie löst man solch eine Aufgabe und wie lautet in diesem Falle die lösung. Ich habe natürlich Versuchsansätze welche Vergebens waren, ich würde gerne aus den Ergebnissen und Lösungen den Ansatz heraus erkenne so hoffe ich damit ich den Rest selbst erledigen kann. Danke !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parametergleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Mi 05.01.2011
Autor: Neunstein

Kann es sein das ich jeweils vor dem p und dem u eine x beliebige Zahl einfügen muss, weil da steht verschiedene ?

Bezug
                
Bezug
Parametergleichung: nicht notwendig
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 05.01.2011
Autor: Loddar

Hallo Neunstein!



> Kann es sein das ich jeweils vor dem p und dem u eine x
> beliebige Zahl einfügen muss, weil da steht verschiedene ?


Musst Du nicht. Denn wenn Du nichts davor schreibst, ist es wie ein Faktor 1, der davor steht.



Gruß
Loddar


Bezug
        
Bezug
Parametergleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 05.01.2011
Autor: Adamantin

[mm] g:\vec{x}=\vec{p}+\lambda [/mm] * [mm] \vec{u} [/mm]

Das ist die Parameterdarstellung (natürlich mit Vektoren ausgeschrieben, das kann ich mir aber hofentlich sparen). Da du aber offenbar nicht einmal die Grundlagen kennst, solltest du dringend ein Buch zur Hand nehmen, die Parameterdarstellung ist die einfachste aller Darstellungsformen (oder sagen wir: die offensichtlichste) und du solltest dich schon "blind" mit ihr auskennen. Alles andere macht leider wenig Sinn, da wird dir auch meine weitere Lösung nix bringen

Gehst du nun entlang der Geraden, also z.B. für [mm] \lambda [/mm] =1, so erhälst du einen neuen Punkt, den du als Stützpunkt benutzen kannst. Nimmst du ein Vielfaches von [mm] \vec{u} [/mm] hast du auch einen neuen Richtungsvektor. Weiß allerdings nicht, ob die Aufgabe so gedacht ist, aber bei einer Geraden kann man keinen neuen Richtungsvektor kreieren (bei einer Ebene schon), sprich der neue Vektor ist natürlich mit dem alten kolinear.

Bezug
                
Bezug
Parametergleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 05.01.2011
Autor: Neunstein

Na ich hab ja das Buch in der Hand und bin im Thema gerade auf der 3ten Seite und versuche mich drauf vorzubereiten. Ich habe folgendes gefunden was lediglich auf das Wort Parameter passt nähmlich Parameterform. Hier heissts Geradengleichung in Parameter form [mm] g:\vec{x}=\vec{p}+t*\vec{u} [/mm]
Ich will doch nurn Beispiel dann kann ichs hoffentlichraus erknnen wills ja Lernen :(

Bezug
                        
Bezug
Parametergleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mi 05.01.2011
Autor: Adamantin

Ja supi, dann passt das doch zu meiner Ansage, oder? ;)

Also setz doch mal dein p und dein u dort ein. Gemacht? Was steht dann da? Du erzeugst einen neuen Vektor x, indem du beim Vektor p startest, dem sogenannten Stützvektor, und in die Richtung des Vektors u (genau: Richtungsvektor) um genau t/lambda-Einheiten gehst. Du erreichst also einen neuen Punkt auf der Geraden, wenn du z.B. bei p startest und um t=1 in Richtung u gehst. Kannst du das jetzt machen?

Bezug
                                
Bezug
Parametergleichung: Lösung zur a.)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Mi 05.01.2011
Autor: Adamantin

Wenn du genug drüber nachgedacht hast, hier die Lösung:

> $ [mm] \vec{p}= \pmat{ 0 \\ 3 \\ -9 } [/mm] $ ; $ [mm] \vec{u}=\pmat{ 1 \\ 2 \\ 3 } [/mm] $

Also die Parameterdarstellung mit diesen Angaben lautet:

[mm] $g:\vec{x}=\pmat{ 0 \\ 3 \\ -9 }+t*\pmat{ 1 \\ 2 \\ 3 } [/mm] $

Gehen wir nun mit t=1 in Richtung u, so erhalten wir den neuen Vektor [mm] p_2: [/mm]

[mm] \vex{p_2}=\pmat{ 1 \\ 5 \\ -6 } [/mm]

Damit ergibt sich eine neue Geradengleichung, die aber dieselbe!! Gerade beschreibt:

[mm] $g:\vec{x}=\pmat{ 1 \\ 5 \\ -6 }+t*\pmat{ 1 \\ 2 \\ 3 } [/mm] $

Nehmen wir statt dem Richtungsvektor u einfach 2u, so erhalten wir eine neue Geradengleichung, die aber diesselbe Gerade beschreibt:

[mm] $g:\vec{x}=\pmat{ 1 \\ 5 \\ -6 }+t*\pmat{ 2 \\ 4 \\ 6 } [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]