www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungParametergleichungen bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Parametergleichungen bestimmen
Parametergleichungen bestimmen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametergleichungen bestimmen: Bitte kontrollieren: 8a/8b
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 08.10.2005
Autor: SuperTTT

Hallo,

[Dateianhang nicht öffentlich]

könntet ihr bitte diese beiden Aufgaben kontrollieren. Vorneweg, der Lehrer hat uns zu bestimmten Aufgaben ein Lösungsblatt verteilt, auf der er die Aufgaben anders berechnet hat, als wir es eigentlich gelernt haben.
Dementsprechend hat er auch andere Ebenen raus und es ist jetzt die Frage, ob die mit meinen identisch sind. Seine Ebenen sind:

a) E:x=  [mm] \vektor{1 \\ 1 \\ -1} [/mm] + r  [mm] \vektor{5 \\ -2 \\ 0} [/mm] + s [mm] \vektor{3 \\ 0 \\ 1} [/mm]

b) E:x=  [mm] \vektor{0 \\ 1 \\ 0} [/mm] + r  [mm] \vektor{5 \\ -1 \\ 2} [/mm] + s [mm] \vektor{0 \\ 1 \\ 0} [/mm]

Und nun ich:
[Dateianhang nicht öffentlich]

Danke im Voraus.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Parametergleichungen bestimmen: überprüfen...
Status: (Antwort) fertig Status 
Datum: 20:58 Sa 08.10.2005
Autor: informix

Hallo SuperTTT,
>  
> [Dateianhang nicht öffentlich]
>  
> könntet ihr bitte diese beiden Aufgaben kontrollieren.
> Vorneweg, der Lehrer hat uns zu bestimmten Aufgaben ein
> Lösungsblatt verteilt, auf der er die Aufgaben anders
> berechnet hat, als wir es eigentlich gelernt haben.
>  Dementsprechend hat er auch andere Ebenen raus und es ist
> jetzt die Frage, ob die mit meinen identisch sind. Seine
> Ebenen sind:
>  
> a) E:x=  [mm]\vektor{1 \\ 1 \\ -1}[/mm] + r  [mm]\vektor{5 \\ -2 \\ 0}[/mm] +
> s [mm]\vektor{3 \\ 0 \\ 1}[/mm]
>  
> b) E:x=  [mm]\vektor{0 \\ 1 \\ 0}[/mm] + r  [mm]\vektor{5 \\ -1 \\ 2}[/mm] +
> s [mm]\vektor{0 \\ 1 \\ 0}[/mm]
>  
> Und nun ich:
> [Dateianhang nicht öffentlich]
>  

Wie überprüft man solche Lösungen?
man kontrolliert, ob die Richtungsvektoren übereinstimmen:
[mm] $-\bruch{1}{2}\vektor{5 \\ -2 \\ 0} [/mm] = [mm] \vektor{\bruch{-5}{2} \\ 1 \\ 0}$ [/mm] (also Vielfache), der andere Vektor ist ja sogar gleich.
Dann prüft man, ob der Aufhängepunkt [mm]\vektor{1 \\ 1 \\ -1}[/mm] auch auf der von dir berechneten Geraden liegt.
[mm]\vektor{1 \\ 1 \\ -1}=\vektor{\bruch{13}{2}\\0\\0} + r \vektor{\bruch{-5}{2} \\ 1 \\ 0} + s \vektor{3 \\ 0 \\ 1}[/mm]
aus den unteren beiden Zeilen erkennst du: r = 1 und s = -1; aber dann "passt" die erste Zeile nicht.  Schreibfehler?
Ich habe mich verrechnet! [sorry]

Ebenso bei den beiden anderen Geraden: schaffst du das allein?


Bezug
                
Bezug
Parametergleichungen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Sa 08.10.2005
Autor: SuperTTT


> aus den unteren beiden Zeilen erkennst du: r = 1 und s =
> -1; aber dann "passt" die erste Zeile nicht.  
> Schreibfehler?

Ich erkenne, dass demtentsprechend r=1 und s=-1 ist, aber woher weiß ich dann, dass diese beiden Reihen richtig sind? Das verstehe ich nicht.

> Ebenso bei den beiden anderen Geraden: schaffst du das
> allein?

Eher nicht. Also die beiden Richtungsvektoren haben bei 8b ja nun wirklich überhaupt keine Ähnlichkeit. Heißt das, dass es falsch ist?

Bezug
                        
Bezug
Parametergleichungen bestimmen: Erklärung(sversuch)
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 08.10.2005
Autor: informix


> > aus den unteren beiden Zeilen erkennst du: r = 1 und s =
> > -1; aber dann "passt" die erste Zeile nicht.  
> > Schreibfehler?
>  
> Ich erkenne, dass demtentsprechend r=1 und s=-1 ist, aber
> woher weiß ich dann, dass diese beiden Reihen richtig sind?
> Das verstehe ich nicht.
>  
> > Ebenso bei den beiden anderen Geraden: schaffst du das
> > allein?
>  
> Eher nicht. Also die beiden Richtungsvektoren haben bei 8b
> ja nun wirklich überhaupt keine Ähnlichkeit. Heißt das,
> dass es falsch ist?

ja, denn [mm] $\vektor{0\\0\\0}$ [/mm] hat keine Richtung und kann deshalb auch nicht Richtungsvektor sein!
[mm] $2x_1 [/mm] + 0 [mm] x_2 [/mm] - [mm] 5x_3=0$ \Rightarrow $x_1 [/mm] = [mm] \bruch{5}{2}x_3$ [/mm] ist ok.
Setze [mm] x_2 [/mm] = r und [mm] x_3 [/mm] = s wie eben auch!
Dann erhältst du: [mm] $\vektor{x_1\\x_2\\x_3} [/mm] = [mm] \vektor{0\\0\\0} [/mm] +r [mm] \vektor{0\\ \red{1}\\0} [/mm] + s [mm] \vektor{\bruch{5}{2}\\0\\1}$ [/mm]
erkennst du den Unterschied?
und das musst du nun mit $E: x=  [mm] \vektor{0 \\ 1 \\ 0} [/mm]  + r   [mm] \vektor{5 \\ -1 \\ 2} [/mm]  + s  [mm] \vektor{0 \\ 1 \\ 0} [/mm] $ komponentenweise vergleichen, also Zeile für Zeile.
Mir scheint allerdings, dass hier wirklich zwei unterschiedliche Ebenen vorliegen....



Bezug
                                
Bezug
Parametergleichungen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Sa 08.10.2005
Autor: SuperTTT

Hmm, dann wäre es gut, wenn du oder jemand anders in meinen Rechnungen mal nachgucken könnte, was ich falsch gemacht habe. Ich kann da nix finden, aber das heißt ja nix.

Das gleiche gilt für 8a, falls da jetzt (in der x1-Ebene) was falsch sein sollte.

Bezug
                                        
Bezug
Parametergleichungen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 Sa 08.10.2005
Autor: Fergie_2005

Ich frage mich warum du dir das leben so zur Hölle machst!?!
Mach es doch einfach wie dein Lehrer.
Er hat sich zu den Normalenvektor zwei Orthogonal gesucht das bedeutet dass der normalen Vektor  und der gesuchten Vektor skalamultipliziert null ergeben. somit hast du dann zwei richtugnsvektoren die mit der Lösunge desn lehrers übereinstimmen. Du könntest zwar unendliche viele richtungsvektoren finden aber nur dann wenn sich mit dme Normalenvektor null ergeben. Denn stützvektor findest du indem du vieleicht einfach für x1 und x2 = 1 einsetzen würdest und somit x3 =-1 ist. hauptsache der Punkt (Vektor) erfüllt die Gleichung.
Außerdem hast du zeit im Test auch nicht!!!
ich würde es so machen wie die Lösungen des Lehrer es vorschlagen.

Bezug
                                                
Bezug
Parametergleichungen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:07 So 09.10.2005
Autor: SuperTTT

Leider kann ich deinen Einwand nicht nachvollziehen. Guck dir im ersten Beitrag mal meine Rechnungen an, die sind doch ganz kurz. Dann bin ich im Test bzw. in der Klausur doch auch schnell fertig, denn ich bekomme dort ja keine Vorschlagslösung, die ich dort auf Richtigkeit zu überprüfen habe.

Kann mir nicht vorstellen, dass dein vorgeschlagener Rechenweg einfacher und kürzer ist.

Bezug
                                        
Bezug
Parametergleichungen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 So 09.10.2005
Autor: Stefan

Hallo SuperTTT!

Also, bis auf die Tatsache, dass du übersehen hast, dass [mm] $x_2$ [/mm] beliebig ist und daher der erste Richtungsvektor gleich [mm] $\pmat{0 \\ 1 \\ 0}$ [/mm] und nicht gleich [mm] $\pmat{0 \\ 0 \\ 0}$ [/mm] zu setzen ist, hast du alles richtig gemacht.

[daumenhoch]

Liebe Grüße
Stefan

Bezug
                                                
Bezug
Parametergleichungen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:49 So 09.10.2005
Autor: SuperTTT

Ok, danke für die Auflösung der ganzen Verwirrung. ;)

Bezug
                                
Bezug
Parametergleichungen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:47 So 09.10.2005
Autor: Stefan

Hallo informix!

>  Setze [mm]x_2[/mm] = r und [mm]x_3[/mm] = s wie eben auch!
>  Dann erhältst du: [mm]\vektor{x_1\\x_2\\x_3} = \vektor{0\\0\\0} +r \vektor{0\\ \red{1}\\0} + s \vektor{\bruch{5}{2}\\0\\1}[/mm]
> erkennst du den Unterschied?
>  und das musst du nun mit [mm]E: x= \vektor{0 \\ 1 \\ 0} + r \vektor{5 \\ -1 \\ 2} + s \vektor{0 \\ 1 \\ 0}[/mm]
> komponentenweise vergleichen, also Zeile für Zeile.
>  Mir scheint allerdings, dass hier wirklich zwei
> unterschiedliche Ebenen vorliegen....

Nein, es sind die gleichen Ebenen.

Beachte:

[mm] $\pmat{5 \\ -1 \\ 2} [/mm] = 2 [mm] \cdot \vektor{\bruch{5}{2}\\0\\1} [/mm] - 1 [mm] \cdot \vektor{0\\ 1\\0}$. [/mm]

Liebe Grüße
Stefan


Bezug
                                        
Bezug
Parametergleichungen bestimmen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:53 Di 11.10.2005
Autor: informix

Hallo Stefan!
>  
> >  Setze [mm]x_2[/mm] = r und [mm]x_3[/mm] = s wie eben auch!

>  >  Dann erhältst du: [mm]\vektor{x_1\\x_2\\x_3} = \vektor{0\\0\\0} +r \vektor{0\\ \red{1}\\0} + s \vektor{\bruch{5}{2}\\0\\1}[/mm]
> > erkennst du den Unterschied?
>  >  und das musst du nun mit [mm]E: x= \vektor{0 \\ 1 \\ 0} + r \vektor{5 \\ -1 \\ 2} + s \vektor{0 \\ 1 \\ 0}[/mm]
> > komponentenweise vergleichen, also Zeile für Zeile.
>  >  Mir scheint allerdings, dass hier wirklich zwei
> > unterschiedliche Ebenen vorliegen....
>  
> Nein, es sind die gleichen Ebenen.
>  
> Beachte:
>
> [mm]\pmat{5 \\ -1 \\ 2} = 2 \cdot \vektor{\bruch{5}{2}\\0\\1} - 1 \cdot \vektor{0\\ 1\\0}[/mm].
>  

danke Stefan :-) Gut dass immer noch jemand nachschaut!

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]