www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenParameterintegrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Parameterintegrale
Parameterintegrale < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterintegrale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:59 Mo 28.11.2011
Autor: RWBK

Aufgabe
Hierbei handelt es sich um eine Beispielaufgabe aus der Vorlesung.
Man berechne für x>0 das Parameterintegrale
F(X)= [mm] \integral_{a}^{b}{sin(tx) dx} [/mm]

Hallo,

verstehe leider diese Beispielaufgabe nicht und würde mich daher sehr freuen wenn mir vllt jemand diese Aufgabe vllt einmal erklären würde damit ich das mal verstehe. Folgendes wurde als nächster Schritt an die Tafel geschrieben
[mm] =-\bruch{1}{x}cos(tx) [/mm]  Die obere und unteren grenzen wurden natürlich noch angegeben! Da komme ich aber ehrlich gesagt nicht drauf woher kommt das - [mm] \bruch{1}{x}?? [/mm]

Mfg

        
Bezug
Parameterintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 28.11.2011
Autor: MathePower

Hallo RWBK;

> Hierbei handelt es sich um eine Beispielaufgabe aus der
> Vorlesung.
>  Man berechne für x>0 das Parameterintegrale
>  F(X)= [mm]\integral_{a}^{b}{sin(tx) dx}[/mm]
>  Hallo,
>  


Das soll hier bestimmt so lauten:

[mm]F(X)= \integral_{a}^{b}{sin(tx) d\blue{t}}[/mm]


> verstehe leider diese Beispielaufgabe nicht und würde mich
> daher sehr freuen wenn mir vllt jemand diese Aufgabe vllt
> einmal erklären würde damit ich das mal verstehe.
> Folgendes wurde als nächster Schritt an die Tafel
> geschrieben
>  [mm]=-\bruch{1}{x}cos(tx)[/mm]  Die obere und unteren grenzen
> wurden natürlich noch angegeben! Da komme ich aber ehrlich
> gesagt nicht drauf woher kommt das - [mm]\bruch{1}{x}??[/mm]
>


Hier hat man zunächst eine Stammfunktion von [mm]\sin\left(tx\right)[/mm] gesucht.


> Mfg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]