www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisParameterintegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Parameterintegrale
Parameterintegrale < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterintegrale: holomorph
Status: (Frage) beantwortet Status 
Datum: 22:21 Di 09.07.2013
Autor: mikexx

Aufgabe
Es sei [mm] $U\subseteq\mathbb{C}$ [/mm] offen, [mm] $\gamma$ [/mm] ein stückweise stetig differenzierbarer Weg in [mm] $\mathbb{C}$ [/mm] und [mm] $f\colon\mbox{ Bild }(\gamma)\times U\to\mathbb{C}$ [/mm] eine stetige Funktion. Betrachte das Parameterintegral

[mm] $F(z):=\int_{\gamma}f(w,z)\, [/mm] dw, [mm] z\in [/mm] U$.

Zu zeigen ist:

Ist für jedes [mm] $\omega\in\mbox{ Bild }(\gamma)$ [/mm] die Funktion [mm] $z\mapsto [/mm] f(w,z)$ holomorph in $U$, mit auf [mm] $\mbox{Bild}(\gamma)\times [/mm] U$ stetiger Ableitung [mm] $\frac{\partial}{\partial z}f(w,z)$, [/mm] so ist $F(z)$ holomorph und es darf unter dem Integral differenziert werden:

[mm] $F'(z)=\int_{\gamma}\frac{\partial}{\partial z}f(w,z)\, [/mm] dw, [mm] z\in [/mm] U$

Ich persönlich habe diese Frage nirgens anders gestellt, habe aber gesehen, dass sie jemand anders hier gestellt hat:
http://matheplanet.com/

Ich würd gern den Beweis hinbekommen, weiß aber nicht, wie!

In dem Link wird auf Königsberger verwiesen, aber es nützt mir nichts, den Beweis in einem Buch nachzulesen!

Kann mir jemand helfen?


        
Bezug
Parameterintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Mi 10.07.2013
Autor: rainerS

Hallo!

> Es sei [mm]U\subseteq\mathbb{C}[/mm] offen, [mm]\gamma[/mm] ein stückweise
> stetig differenzierbarer Weg in [mm]\mathbb{C}[/mm] und
> [mm]f\colon\mbox{ Bild }(\gamma)\times U\to\mathbb{C}[/mm] eine
> stetige Funktion. Betrachte das Parameterintegral
>
> [mm]F(z):=\int_{\gamma}f(w,z)\, dw, z\in U[/mm].
>  
> Zu zeigen ist:
>  
> Ist für jedes [mm]\omega\in\mbox{ Bild }(\gamma)[/mm] die Funktion
> [mm]z\mapsto f(w,z)[/mm] holomorph in [mm]U[/mm], mit auf
> [mm]\mbox{Bild}(\gamma)\times U[/mm] stetiger Ableitung
> [mm]\frac{\partial}{\partial z}f(w,z)[/mm], so ist [mm]F(z)[/mm] holomorph
> und es darf unter dem Integral differenziert werden:
>  
> [mm]F'(z)=\int_{\gamma}\frac{\partial}{\partial z}f(w,z)\, dw, z\in U[/mm]
>  
> Ich persönlich habe diese Frage nirgens anders gestellt,
> habe aber gesehen, dass sie jemand anders hier gestellt
> hat:
>  http://matheplanet.com/
>  
> Ich würd gern den Beweis hinbekommen, weiß aber nicht,
> wie!

Da die Cauchy-Riemannschen Differentialgleichungen notwendige Bedingungen für die Holomorphie darstellen, würde ich erstmal diese für $F(z)$ aufstellen.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]