www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisParametrisierung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Parametrisierung
Parametrisierung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung : Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:04 Di 19.10.2004
Autor: ratz

Hallo ,

ich habe eine parametrisierte Kurve [mm]c(t)[/mm] und möchte diese jetzt in kartesischen Koordinaten umrechen

[mm] c(t) = {\wurzel{a^2+a^2*p^2}*\ sin (p-arctan(p)),\wurzel{a^2+a^2*p^2}*\ cos (p-arctan(p))} [/mm]

hat jemend einen idee wie das gehen kann?

nach p auflösen geht bei beiden nicht und wenn ich
mal [mm]x^2+y^2 = ... [/mm] probiere bekomm ich das p auch nicht weg !?!

lg steffi

        
Bezug
Parametrisierung : Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Di 19.10.2004
Autor: Paulus

Hallo Steffi

sei bitte so nett und untersuche nochmals genau, ob du dich nirgends vertippt hast!

>  
> ich habe eine parametrisierte Kurve [mm]c(t)[/mm] und möchte diese
> jetzt in kartesischen Koordinaten umrechen
>  
> [mm]c(t) = {\wurzel{a^2+a^2*p^2}*\ sin (p-arctan(p)),\wurzel{a^2+a^2*p^2}*\ cos (p-arctan(p))}[/mm]
>  
>

1. vermute ich, dass es heissen sollte: $c(p)$ und nicht $c(t)$

2. vermute ich, dass es unter der Wurzel einmal ein Minus, das andere Mal ein Plus hat.

Kannst du das alles bitte nochmals checken?

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Parametrisierung : Idee und frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:42 Di 19.10.2004
Autor: ratz

Hallo Paulus,

ja das soll natürlich [mm]c(p)[/mm] heißen, aber die zwei +
in der wurzel stimmen.

ich hab das nochmal probiert, mit  [mm]x^2+y^2=...[/mm] und ich habs jetzt doch nach p auflösen können und dann einfach in x = .. eingesetzt, ich denke mal so muss das auch gehen.

Ich hab mich jedoch gleich an die nächste aufgabe gemacht und dort die gleichen Umformungen durchgeführt, Hier kann ich jetzt allerdings nicht mehr nach p auflösen. gibts auser [mm]x^2+y^2[/mm] noch andere manipulationen mit denen man oft aufs ergebnis kommt oder wie läst man dann folgende Parametrisierung in kartesische koordinaten auf??

[mm]c(p)={\wurzel{a^2+(a*(p-b+Pi/2-\ cos(p-b))/(1+sin(p-b)))^2}* sin( p-arctan((p-b+Pi/2-\ cos(p-b))/(1+sin(p-b))) ),\wurzel{a^2+(a*(p-b+Pi/2-\ cos(p-b))/(1+sin(p-b)))^2}* cos( p-arctan((p-b+Pi/2-\ cos(p-b))/(1+sin(p-b))) )}[/mm]

lg steffi




Bezug
                        
Bezug
Parametrisierung : Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Di 19.10.2004
Autor: Paulus

Hallo ratz

ich frage mich ernsthaft, wozu du denn das $p$ eliminieren willst.
Ist das tatsächlich eine gestellte Aufgabe?

Es ist doch so, dass das eine schöne Spirale ergibt, und ein Eliminieren des Parameters $p$ betrachte ich deshalb als alles andere als sinnvoll.
Bei einer Spirale kann es ja gar keine Funktion $y(x)$ geben!

Kannst du mich da noch etwas mehr aufklären, ich bin irgendwie verwirrt!

Mit lieben Grüssen

Paul

Bezug
                                
Bezug
Parametrisierung : Frage
Status: (Frage) beantwortet Status 
Datum: 08:21 Mi 20.10.2004
Autor: ratz

Morgen Paulus,

woran siehst du denn das das eine Spirale ist??

und warum gibt s da keine lösung [mm] y(x) = ... [/mm].
Das  wusste ich bis jetzt noch nicht.

kann man das dann in polarkoordinaten darstellen??

lg steffi

Bezug
                                        
Bezug
Parametrisierung : Spirale - Begründung
Status: (Antwort) fertig Status 
Datum: 09:19 Mi 20.10.2004
Autor: Paulus

Hallo Steffi

Die Dartstellung


$ c(t) = [mm] (\wurzel{a^2+a^2*t^2}*\sin (t-arctan(t)),\wurzel{a^2+a^2*t^2}*\cos [/mm] (t-arctan(t)))$

Bedeutet ja:

$x = [mm] \wurzel{a^2+a^2*t^2}*\sin [/mm] (t-arctan(t))$
$y = [mm] \wurzel{a^2+a^2*t^2}*\cos [/mm] (t-arctan(t))$


Wenn du mal den Wurzelausdruck wegdenkst, entsteht

$x = [mm] \sin [/mm] (t-arctan(t))$
$y = [mm] \cos [/mm] (t-arctan(t))$

Die weitere Substitution

[mm] $t-arctan(t)=\varphi$ [/mm]

führt zu

$x = [mm] \sin (\varphi)$ [/mm]
$y = [mm] \cos(\varphi)$ [/mm]

...und da siehst du ganz deutlich, dass das ein Kreis ist.

Wenn du den Wurzelausdruck wieder dazudenkst, erkennst du, dass sein Wert mit wachsendem Parameter $t$ steigt. Das heisst, der "Kreisradius" wird mit wachsendem $t$ grösser, der Kreis mutiert zu einer Spirale.

Das mit den Polarkoordinaten kannst du ja einmal versuchen, ich habe mir darüber aber noch keine konkreten Gedanken gemacht.

Evtl könnte man auch die Additionstheoreme anwenden?
Wie zum Beispiel

[mm] $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta) [/mm] + [mm] \sin (\beta) \cos (\alpha)$ [/mm]

Dann kann [mm] $\sin (\arctan [/mm] (t))$ auch noch umgesetzt werden. Ist aber nur so eine Idee, die ich nicht weiterverfolgt habe. (Rechenarbeit ;-))

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]