www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenParametrisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Parametrisierung
Parametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:24 Fr 17.06.2011
Autor: stffn

Aufgabe
Parametrisieren Sie die folgende Menge als Kurve [mm] \vec{c}:[0,1]\to\IR^2: [/mm]

[mm] C:=\{(x,y)^T\in\IR^2|4(x-1)^2+(y-3)^2=16\}. [/mm]

Hallo zusammen,

ich wollt diese Aufgabe rechnen, habe dann aber gemerkt dass ich garnicht genau weiß was 'parametrisieren' eigentlich bedeutet. Kann man es als 'Abhängigmachen von einer Variablen' bezeichnen?
Und was sagt mir der Def.-bereich von [mm] \vec{c}? [/mm]
Entschuldigt das ich keinen Lösungsvorschlag habe, aber ich weiß auch garnicht wie ich überhaupt anfangen soll. Ich weiß nur dass die Menge eine Ellipse ist.

Ich wünsche dennoch ein schönes Wochenende und hoffe, dass mir jemand helfen kann:=)

        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 17.06.2011
Autor: MathePower

Hallo stffn,

> Parametrisieren Sie die folgende Menge als Kurve
> [mm]\vec{c}:[0,1]\to\IR^2:[/mm]
>  
> [mm]C:=\{(x,y)^T\in\IR^2|4(x-1)^2+(y-3)^2=16\}.[/mm]
>  Hallo zusammen,
>  
> ich wollt diese Aufgabe rechnen, habe dann aber gemerkt
> dass ich garnicht genau weiß was 'parametrisieren'
> eigentlich bedeutet. Kann man es als 'Abhängigmachen von
> einer Variablen' bezeichnen?


Da es sich hier um eine Kurve handelt,
werden alle Punkte dieser Kurve durch einen
einzigen Parameter abgelaufen.


>  Und was sagt mir der Def.-bereich von [mm]\vec{c}?[/mm]
>  Entschuldigt das ich keinen Lösungsvorschlag habe, aber
> ich weiß auch garnicht wie ich überhaupt anfangen soll.
> Ich weiß nur dass die Menge eine Ellipse ist.
>  
> Ich wünsche dennoch ein schönes Wochenende und hoffe,
> dass mir jemand helfen kann:=)


Gruss
MathePower

Bezug
                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Sa 18.06.2011
Autor: stffn

OK, das macht Sinn.

Aber wie gehe ich daran?
Muss ich das in Polarkoordinaten machen?

Und stimmt es, dass der Mittelpunkt bei [mm] M_0(x,y)=(1,3) [/mm] liegt, weil [mm] x\in[-1,3] [/mm] und [mm] y\in[-1,7] [/mm] ist?

Wenn dem so ist, kann man daraus folgern, dass die Hauptachse der Ellipse um 90° bzgl. der x-Achse gedreht ist?
[mm] \Rightarrow \vec{c}(t)=\vektor{1-b*sin(t) \\ 3+a*cos(t)} [/mm] mit a=4 und b=2?

Das ist bestimmt weit daneben, aber im Moment das einzige was mir einfällt (mit Hilfe von Wiki...)
Ich danke euch!

Bezug
                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Sa 18.06.2011
Autor: abakus


> OK, das macht Sinn.
>  
> Aber wie gehe ich daran?
>  Muss ich das in Polarkoordinaten machen?
>
> Und stimmt es, dass der Mittelpunkt bei [mm]M_0(x,y)=(1,3)[/mm]
> liegt, weil [mm]x\in[-1,3][/mm] und [mm]y\in[-1,7][/mm] ist?

Ja.

>  
> Wenn dem so ist, kann man daraus folgern, dass die
> Hauptachse der Ellipse um 90° bzgl. der x-Achse gedreht
> ist?

Ja.

>  [mm]\Rightarrow \vec{c}(t)=\vektor{1-b*sin(t) \\ 3+a*cos(t)}[/mm]
> mit a=4 und b=2?
>  
> Das ist bestimmt weit daneben, aber im Moment das einzige
> was mir einfällt (mit Hilfe von Wiki...)
>  Ich danke euch!

Hallo,
ich interpretiere die Aufgabenstellung so, dass der Parameter nur von 0 bis 1 wandern darf. Bei dir würde er bis [mm] 2\pi [/mm] gehen, um die kompletten Ellipse auszudrücken.
Gruß Abakus


Bezug
                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Sa 18.06.2011
Autor: stffn

Alles klar, das würde also heißen, dass mein Ergebnis einfach noch kurz modifiziert werden müsste:

[mm] \vec{c}(t)=\vektor{1-2\cdot{}sin(2\pi*t) \\ 3+4\cdot{}cos(2\pi*t)}. [/mm]

Richtig?

Können wir noch kurz, dem Verständnis wegen, das hier
[mm] F(\vec{x})=x^2+y^2 [/mm] mit [mm] \vec{c}:[0,\infty]\to\IR^2 [/mm]
parametrisieren? Wäre sehr freundlich, weil so richtig habe ich die Vorgehensweise noch nicht verstanden.

Könnte das so oder so ähnlich aussehen?:

[mm] c(t)=cos^2(t)+sin^2(t) [/mm]

Vielen, vielen Dank!

Bezug
                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 18.06.2011
Autor: leduart

Hallo

> Alles klar, das würde also heißen, dass mein Ergebnis
> einfach noch kurz modifiziert werden müsste:
>  
> [mm]\vec{c}(t)=\vektor{1-2\cdot{}sin(2\pi*t) \\ 3+4\cdot{}cos(2\pi*t)}.[/mm]
>  
> Richtig?

ja.

> Können wir noch kurz, dem Verständnis wegen, das hier
> [mm]F(\vec{x})=x^2+y^2[/mm] mit [mm]\vec{c}:[0,\infty]\to\IR^2[/mm]
>  parametrisieren? Wäre sehr freundlich, weil so richtig
> habe ich die Vorgehensweise noch nicht verstanden.

Hier hast du ja keine Kurve? sondern eine 2d Funktion
Kurven sind nur die "Höhenlinien F=const=r
was ist denn die exakte Aufgabe?


Bezug
                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 18.06.2011
Autor: stffn

Naja in der Eigentlichen Aufgabe soll ich das Wegintegral der Funktion
[mm] F:\IR^2\to\IR, F(\vec{x})=|\vec{x}|^2 [/mm] längs [mm] \vec{c} [/mm] berechnen.

Meine Überlegung:

[mm] F(\vec{x})=|\vektor{x \\ y}|^2=\wurzel{x^2+y^2}^2=x^2+y^2. [/mm]

Und um das längs c zu integrieren, wollte ich es erstmal parametrisieren, dass ich nur noch nach der Variablen t integrieren muss.



Bezug
                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Sa 18.06.2011
Autor: leduart

Hallo
Dann sieh dir erstmal an wie ein Wegintegral aussieht, bzw ein Kurvenintegral! Kannst du das hinschreiben?  [mm] c=\vektor{x(t)\\y(t)} [/mm] kennst du ja, dann c in F einsetzen und c' berechnen.
Gruss leduart


Bezug
                                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 19.06.2011
Autor: stffn

Also ist es dann richtig das so zu machen:

[mm] c(t)=r^2(cos^2t*sin^2t)=r^2 [/mm]

[mm] \Rightarrow [/mm] c'(t)=0

Also ist das Integral von 0=C?

Bezug
                                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 19.06.2011
Autor: leduart

Hallo ich dachte du sollst die fkt [mm] F(x,y)=x^2+y^2 [/mm] längs der kurve aus dem ersten post integrieren?
c(t) hattest du doch richtig als Vektor angegeben?
schreib bitte mal  auf
1.die Formel für das Kurvenintegral auf.
[mm] 2.F(\vec{c(t}) [/mm]
3. [mm] \vec{c'(t} [/mm]
[mm] 4.|\vec{c'(t}| [/mm]
dann 2 und 4 in 1 einsetzen!
Gruss leduart


Bezug
                                                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 20.06.2011
Autor: stffn

Aufgabe
Berechne das Wegintegral der Funktion
$ [mm] F:\IR^2\to\IR, F(\vec{x})=|\vec{x}|^2 [/mm] $ längs $ [mm] \vec{c} [/mm] $ berechnen.

Hallo nochmal,
also die Aufgabe aus dem ersten Post hat nichts mehr mit der Aufgabe zu tun.
Ich hab sie nochmal oben aufgeschrieben.

Also die Formel für das Wegintegral ist ja

[mm] \integral_{\vec{x}}^{}{F ds}=\integral_{\vec{x}}^{}{F(x(t))*\vec{x}'dt}. [/mm]

mit [mm] F(\vec{x})=|\vec{x}|^2 [/mm]  und  [mm] \vec{c}:[0,\infty]\to\IR. [/mm]

Ich muss doch parametrisieren oder nicht?


Bezug
                                                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 20.06.2011
Autor: leduart

Hallo
wie ist denn [mm] \vec{c(t)} [/mm] gegeben? was du schreibst $ [mm] \vec{c}:[0,\infty]\to\IR. [/mm] $ ist nicht eine Beschreibung einer Kurve
dein Integral seh ich auch nicht, was du mit x(t) meinst, das soll wohl [mm] \vec{c(t)} [/mm] sein dann steht im integral aber [mm] F(\vec{c(t)})*||\vec{c'(t)}//_2 [/mm]
was weist du über c?
gruss leduart


Bezug
                                                                                                
Bezug
Parametrisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 22.06.2011
Autor: stffn

Vielen Dank nochmal für die Hilfe, ich habe die Aufgabe jetzt gelöst. Ich habe nochmal beim Tutor nachgefragt, und sie war so gestellt, dass man c(t) von einer anderen Aufgabe nehmen sollte. Da das aber nicht aus der Aufgabenstellung hervorging (laut Tutor wurde es wohl einfach vergessen zu erwähnen), dachte ich das ich da irgendwas nicht verstanden habe.
Aber dann ist jetzt alles klar.
Entschuldigt das Missverständnis bitte.
Danke trotzdem für die Mühe, schöne Grüße.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]