www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesParametrisierung Kreis 3D
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Parametrisierung Kreis 3D
Parametrisierung Kreis 3D < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung Kreis 3D: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Di 14.06.2011
Autor: Patrick99

Hallo zusammen!

Ich bin auf der Suche nach der Parametrisierung eines Einheitskreises im dreidimensionalen. Der Kreis muss In der Ebene mit dem allgemeinen Vektor n = [mm] (n_1,n_2,n_3) [/mm] als Normale sein. Die Parametrisierung brauche ich um die Zirkulation eines Feldes entlang dieses Kreises zu berechnen.

Im zweidimensionalen wäre die Parametrisierung ja [mm] \varphi [/mm] -> [mm] \vektor{cos\varphi \\ sin\varphi} [/mm] mit [mm] \varphi \in [0,2\pi] [/mm]

Eine Überlegung die ich gemacht habe aber bei der ich nicht weiterkomme:
Die Ebene hat die Gleichung [mm] a_1\cdot x+a_2\cdot y+a_3\cdot [/mm] z=0 und das kann man schneiden mit der Einheitsspähre [mm] x^2+y^2+z^2=1 [/mm] was mich zu einer Gleichung führen könnte.
Ist aber wahrscheinlich der falsche Ansatz für mein Problem da mich das nicht auf eine Parametrisierung führen wird..

Ich hoffe das ihr mir weiterhelfen könnt :)
Viele Grüsse, Patrick

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parametrisierung Kreis 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Di 14.06.2011
Autor: chrisno

Mein Weg:
- 2D-Parametrisierung in der x-y-Ebene hinschreiben, wie Du es getan hast.
- Die beiden Winkel bestimmen, die angeben, wohin man die z-Achse kippen muss, um die Richtung von n zu erhalten.
- Die vorhandene Parametrisierung durch mit Hilfe der Drehmatritzen entsprechend drehen.
Ich hoffe, dass es noch eine elegantere Lösung gibt.

Bezug
                
Bezug
Parametrisierung Kreis 3D: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Mi 15.06.2011
Autor: Patrick99

Vielen Dank für deine Hilfe. Ich werds mal auf diesem Weg versuchen :)

Bezug
        
Bezug
Parametrisierung Kreis 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mi 15.06.2011
Autor: weduwe

eine möglichkeit wäre mit einem beliebigen vektor [mm] \vec{v} [/mm] mit [mm] \vec{v}\cdot\vec{n}=0 [/mm] und dem mittelpunkt [mm] \vec{m}\in [/mm] E und r = 1:

[mm] \vec{x}=\vec{m}+\frac{\vec{v}}{|\vec{v}|}\cdot cos\phi+\frac{\vec{v}\times\vec{n}}{|\vec{v}\times\vec{n}|}\cdot sin\phi [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]