www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPart. Integ. von Integralen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Part. Integ. von Integralen
Part. Integ. von Integralen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Part. Integ. von Integralen: Lösungsweg aufzeigen
Status: (Frage) beantwortet Status 
Datum: 19:01 So 20.12.2009
Autor: Alpi

Aufgabe
Man berechne die folgenden bestimmten und unbestimmten Integrale mittels partieller Integration

[mm] \integral_{a}^{b} sin^2 x\, dx [/mm]

Wie komme ich bei diesem Term auf die Lösung?

Ich habe
[mm] x=sin^2 [/mm]
x´= ?
y= [mm] \bruch{1}{2} x^2 [/mm]
y´= x

Könnte mir jemand vllt bei der Herleitung von [mm] sin^2 [/mm] helfen?

Ich glaube das es 2*sin * d/dx sin ist und das wäre ja dann
2sin*cos !

Wäre das die richtige Ableitung für [mm] sin^2 [/mm] ?

Und könnte mir jemand dann einen ausführlichen Rechenweg erstellen, sodass ich das Problem und die Lösung in kleinen Schritten nachvollziehen kann?


Mfg Alpi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Part. Integ. von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 So 20.12.2009
Autor: MathePower

Hallo Alpi,

> Man berechne die folgenden bestimmten und unbestimmten
> Integrale mittels partieller Integration
>  [mm]\integral_{a}^{b} sin^2 x\, dx [/mm]
>  
> Wie komme ich bei diesem Term auf die Lösung?
>  
> Ich habe
> [mm]x=sin^2[/mm]
> x´= ?
>  y= [mm]\bruch{1}{2} x^2[/mm]
>  y´= x
>  
> Könnte mir jemand vllt bei der Herleitung von [mm]sin^2[/mm]
> helfen?


Üblicherweise werden bei der partiellen Integration
die Buchstaben u und v verwendet.

Wähle hier

[mm]u=v'=\sin\left(x\right)[/mm]

Dann ist

[mm]\integral_{}^{}{u*v' \ dx}=u*v-\integral_{}^{}{u'*v \ dx}[/mm]


>  
> Ich glaube das es 2*sin * d/dx sin ist und das wäre ja
> dann
> 2sin*cos !
>  
> Wäre das die richtige Ableitung für [mm]sin^2[/mm] ?


Ja.


>  
> Und könnte mir jemand dann einen ausführlichen Rechenweg
> erstellen, sodass ich das Problem und die Lösung in
> kleinen Schritten nachvollziehen kann?
>  
>
> Mfg Alpi
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>


Gruss
MathePower  

Bezug
        
Bezug
Part. Integ. von Integralen: Tipp
Status: (Antwort) fertig Status 
Datum: 19:12 So 20.12.2009
Autor: Loddar

Hallo Alpi!


Zerlege hier wie folgt:
[mm] $$\integral{\sin^2(x) \ dx} [/mm] \ = \ [mm] \integral{\sin(x)*\sin(x) \ dx} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Part. Integ. von Integralen: weiteres Vorgehen
Status: (Frage) beantwortet Status 
Datum: 19:32 So 20.12.2009
Autor: Alpi

In diesem Falle muss ich dann doch mit u=-cosx und v=sinx rechnen oder?

Und komme dann auf:

-cosx *sinx + [mm] \integral{\cos^2 x \ dx} [/mm]

Wobei ich doch dann das Integral umschreiben kann zu [mm] 1-sin^2 [/mm] x oder?

Und ich dann das [mm] sin^2 [/mm] x ersetzen muss, sodass ich dann nur noch das Integral auflösen muss.?

Mfg Alpi

Bezug
                        
Bezug
Part. Integ. von Integralen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 19:33 So 20.12.2009
Autor: Loddar

Hallo Alpi!


[daumenhoch] Genau so geht es ...


Gruß
Loddar


Bezug
                                
Bezug
Part. Integ. von Integralen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Mo 21.12.2009
Autor: Alpi

Danke Loddar für deine regelmäßigen Antworten!

Die mir bis jetzt immer auf die Sprünge geholfen haben.

Mfg Alpi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]