www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 01.03.2014
Autor: Ice-Man

Hllo,

ich habe zu dem Thema mal bitte nur eine kurze Verständnisfrage,

Mit folgendem Term wurde eine "Partialbruchzerlegung" durchgeführt.

[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]

Die stationäre Verstärkung ist mit x=0 zu berechnen und die beiden Pole sind [mm] x_{1}=-\bruch{1}{8} [/mm] und [mm] x_{2}=-\bruch{1}{12} [/mm]
Das Ergebnis ist gegeben mit,

[mm] k=\bruch{A}{x}+\bruch{B}{8x+1}+\bruch{B}{12x+1} [/mm]

Ich verstehe nur nicht warum "2 mal B formuliert werden muss", es handelt sich doch eigentlich nur um ein Polynom 1.Grades.

Kann mir das evtl. jemand bitte erklären?

Schon einmal vielen Dank für eure Hilfe.

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Sa 01.03.2014
Autor: leduart

Hallo
irgendwas ist an deiner Aufgabe komisch. die Partialbruchzerlegung von
[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]
ist
[mm] y=\bruch{A}{8x+1}+\bruch{B}{12x+1} [/mm]
woher soll denn das 1/x stammen?
Was meinst du mit "stationärer Verstärlung??
was ist die eigentliche Aufgabe?
Gruß leduart

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 01.03.2014
Autor: Ice-Man

Ich weis auch nicht wo, [mm] \bruch{1}{x}, [/mm] herkommt.
Es ist halt gefordert das von der Funktion y, die stationäre Verstärkung berechnet wird (x=0 setzen und ausrechnen).
Das wurde ja durchgeführt.
Und nun soll als eigentliches Ziel eine Sprungantwort berechnet werden.
Dafür benötige ich ja die einzelnen Koeffizienten.

Und das soll halt mit "Partialbruchzerlegung" ausgeführt werden.
Ich erhalte ja auch das gleiche Ergebnis wie du, jedoch ist es in der Lösung wie beschrieben, anders vorgegeben.
Und ich hatte halt gedacht das ich hier einmal frage ob ich da nochwas beachten muss bzw. ob ich etwas übersehen habe.


Jedenfalls danke für deine Hilfe.

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 01.03.2014
Autor: leduart

Hallo
so ohne die eigentliche Aufgabe, und die Definition von stationärer Verstärkung ist deine Partialbrichzerlegung sicher keine für dein y.
also nochmel um was geht es? dazu müsste man die eigentliche  Aufgane lennen.
Gruss leduart

Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Sa 01.03.2014
Autor: Ice-Man

Um die Temperatur in einem Reaktor regeln zu können sollen aus den durch physikalische
Modellierung erhaltenenen Differentialgeichungen für die Heizung und die
Temperaturänderung im Reaktor jeweils die Übertragungsfunktionen bestimmt werden.
Gesucht wird dann die Übertragungsfunktionen GH(s) = Q(s)/U(s) (Heizung)
und GR(s) = [mm] \nu(s)/Q(s) [/mm] (Reaktor) bestimmt werden. Die Gesamtübertragungsfunktion
soll bestimmt und anschliessend analysiert werden.

Die Differentialgleichungen sind wie folgt gegeben:

[mm] 8*\bruch{\partial q(t)}{\partial t}+q(t)=0,025*u(t) [/mm]

und

[mm] 12*\bruch{\partial\nu(t)}{\partial(t)}+\nu(t)=0,2*q(t) [/mm]

Bestimmen Sie die Pole von G(s), die stationäre Verstärkung und berechnen Sie die Sprungantwort


Das wäre die komplette Aufgabenstellung.

Ich entschuldige mich jetzt schon einmal das ich die Variablen in meinem Post ein wenig anders genannt habe. (Das war aber nur in meinen Aufzeichnungen so damit ich das persönlich besser unterscheiden konnte.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]