Partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:51 Mi 17.05.2006 | Autor: | arual |
Aufgabe | Ermitteln Sie das unbestimmte Integral von [mm] \bruch{1}{x²-1} [/mm] mittels Partialbruchzerlegung. |
Hallöle!
Ich bräuchte mal wieder eure Hilfe.
Mein Lösungsansatz:
Und zwar habe ich die Nullstellen bestimmt: x1=1 und x2=-1
Also gilt:
[mm] \bruch{1}{x²-1}= \bruch{A}{x-1}+\bruch{B}{x+1}
[/mm]
Der Hauptnenner ist (x-1)(x+1).
Dann komme ich irgendwann auf: [mm] \bruch{(A+B)x+(A-B)}{(x-1)(x+1)}
[/mm]
Ist das bis hierhin richtig?
Jetzt muss ich ja ein Gleichungssystem aufstellen um auf A und B zu kommen.
I) 0=A-B
Aber ich bin mir bei der zweiten Bedingung nicht sicher. Vielleicht A+B=1?
Dann würde ich auf A=B=0,5 kommen. Aber irgendwie kommt mir das ein bisschen merkwürdig vor!?
Schon mal vielen Dank im Voraus.
Lg arual
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:20 Mi 17.05.2006 | Autor: | arual |
Danke für die schnelle Antwort!
Also ist A=0,5 und B=-0,5, ja?
Und ist das Endergebnis des Integrals dann ln|2x-2|- ln|2x+2|+C?
Außerdem hätte ich noch eine Frage zu einer anderen Aufgabe.
Man soll das Integral von [mm] \bruch{2x²+x-3}{2x-3} [/mm] bestimmen. Da hab ich erstmal eine Polynomdivision durchgeführt und komme dann auf [mm] x+2+\bruch{3}{2x-3}. [/mm] Ist das richtig? Und wie muss ich jetzt weitermachen? Es gibt ja nur eine Nullstelle x=1,5, was irgendwie verwirrend ist. Könntest du mir das bitte erklären?
Vielen Dank.
LG arual
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:50 Mi 17.05.2006 | Autor: | arual |
Danke Loddar!
>Ziehe vor dem Integrieren die
> Faktoren vor den zu integrierenden Bruch:
>
> [mm]\integral{... \ dx} \ = \ \integral{\bruch{1}{2}*\bruch{1}{x-1}-\bruch{1}{2}*\bruch{1}{x+1} \ dx} \ = \ \bruch{1}{2}*\integral{\bruch{1}{x-1} \ dx}-\bruch{1}{2}*\integral{\bruch{1}{x+1} \ dx} \ = \ ...[/mm]
>
Dann müsste das Endergebnis 0,5*ln|x-1|-0,5*ln|x+1| sein. Richtig?
>
> Aber das ist doch schön und vereinfacht die Sache ...
>
> Klammere mal den Wert vor dem [mm]x_[/mm] aus:
>
> [mm]x+2+\bruch{3}{2x-3} \ = \ x+2+\bruch{3}{2*\left(x-\bruch{3}{2}\right)} \ = \ x+2+\bruch{3}{2}*\bruch{1}{x-\bruch{3}{2}}[/mm]
>
>
> Kannst Du nun die Stammfunktion bilden?
>
Ehrlich gesagt nein, weil ich nicht verstehe, was ich machen muss, wenn ich nur eine Nullstelle habe. Wir haben bisher nur zwei Beispielaufgaben gerechnet und hatten jedes Mal zwei Nullstellen. Also ist meine Frage, wie ist das allgemeine Vorgehen, wenn es nur eine Nullstelle gibt?
Vielen Dank im Voraus.
LG arual
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:02 Mi 17.05.2006 | Autor: | Loddar |
Hallo arual!
> Dann müsste das Endergebnis 0,5*ln|x-1|-0,5*ln|x+1| sein.
Genau ...
> Ehrlich gesagt nein, weil ich nicht verstehe, was ich
> machen muss, wenn ich nur eine Nullstelle habe. Wir haben
> bisher nur zwei Beispielaufgaben gerechnet und hatten jedes
> Mal zwei Nullstellen. Also ist meine Frage, wie ist das
> allgemeine Vorgehen, wenn es nur eine Nullstelle gibt?
Aber nichts anderes hast Du oben bei der ersten Aufgabe auch gemacht, wo Du doch auch zwei Teilintegrale mit nur jeweils einer Nullstelle bestimmt hast.
Nur dass da halt z.B. [mm] $\integral{\bruch{1}{x-\red{1}} \ dx}$ [/mm] und nicht [mm] $\integral{\bruch{1}{x-\red{\bruch{3}{2}}} \ dx}$ [/mm] stand ...
Also ... ?
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:11 Mi 17.05.2006 | Autor: | arual |
> Also ... ?
... ist es das schon, weil ich ja kein A und B habe. Und das Endergebnis müsste dann 0,5*x²+2*x+1,5*ln|x-1,5|+C sein.
Oder habe ich dich jetzt falsch verstanden?
LG arual
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:36 Mi 17.05.2006 | Autor: | Loddar |
Hallo arual!
> ... ist es das schon, weil ich ja kein A und B habe.
Das hat ja nichts mit der eigentlichen Integration zu tun, sondern "nur" mit der vorherigen Partialbruchzerlegung. Und die ist bei dieser Aufgabe nicht erforderlich.
> Und das Endergebnis müsste dann 0,5*x²+2*x+1,5*ln|x-1,5|+C
> sein.
> Oder habe ich dich jetzt falsch verstanden?
Nein, alles richtig verstanden!
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:06 Mi 17.05.2006 | Autor: | arual |
Danke Loddar!
Dann scheine ich das ja richtig verstanden zu haben. :D
Ich habe noch eine Aufgabe, könntest du mir die noch korrigieren, dann geh ich sicher, dass ich es wirklich verstanden habe.
Man sollte das Integral von [mm] \bruch{x³+x²+5x+12}{x+3} [/mm] bestimmen.
Nach der Polynomdivision: [mm] x²-2x+11-\bruch{21}{x+3}. [/mm] Also müsste das Endergebnis 1/3x³-x²+11x-21*ln|x+3| sein. Richtig?
Das wäre dann auch wirklich die letzte Frage für heute. ;)
Nochmal vielen Dank.
LG arual
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:27 Mi 17.05.2006 | Autor: | Loddar |
Hallo arual!
Kurz und knapp: alles richtig!
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:33 Mi 17.05.2006 | Autor: | arual |
Danke schön!
Bin froh, dass ich das jetzt gut verstanden habe.
Ich wünsch dir noch einen schönen Abend!
LG arual
|
|
|
|