www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Partialbruchzerlegung
Partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:58 Mi 06.05.2009
Autor: Liverpool87

Aufgabe
Integrieren Sie

[mm] \bruch{2x^{2}-3x+5}{x^{3}-x^{2}+x-1} [/mm]

Ich habe einige Schritte übersprungen, Nullstellen etc. Aufgabe stimmt soweit!

[mm] 2x^{2}-3x+5 [/mm] = [mm] Ax^{2}-A [/mm] - [mm] Px^{2} [/mm] - Px - Qx - Q

Frage, wie komm ich auf die Unbekannten A, P und Q
Durch willkürliches einsetzen für x komme ich nicht wirklich weiter!

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mi 06.05.2009
Autor: glie


> Integrieren Sie
>  
> [mm]\bruch{2x^{2}-3x+5}{x^{3}-x^{2}+x-1}[/mm]
>  Ich habe einige Schritte übersprüngen, Nullstellen etc.
>  
> [mm]2x^{2}-3x+5[/mm] = [mm]Ax^{2}-A[/mm] - [mm]Px^{2}[/mm] - Px - Qx - Q
>  
> Frage, wie komm ich auf die Unbekannten A, P und Q
>  Durch willkürliches einsetzen für x komme ich nicht
> wirklich weiter!


Hallo und [willkommenmr]

Fasse die gleichartigen Terme zusammen:

[mm] Ax^{2}-A-Px^{2}-Px-Qx-Q=(A-P)*x^2+(-P-Q)*x+(-A-Q) [/mm]

und führe einen Koeffizientenvergleich durch.

Dann erhältst du ein Gleichungssystem. Welches?

Gruß Glie

Bezug
        
Bezug
Partialbruchzerlegung: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 06.05.2009
Autor: Al-Chwarizmi


> Integrieren Sie
>  
> [mm]\bruch{2x^{2}-3x+5}{x^{3}-x^{2}+x-1}[/mm]
>  Ich habe einige Schritte übersprungen, Nullstellen etc.
> Aufgabe stimmt soweit!
>  
> [mm]2x^{2}-3x+5=Ax^{2}-A- Px^{2} - Px - Qx - Q[/mm]
>  
> Frage, wie komm ich auf die Unbekannten A, P und Q
>  Durch willkürliches einsetzen für x komme ich nicht
> wirklich weiter!


Hallo Liverpool,

sofern dein Term so weit richtig ist (ich komme auf
etwas anderes, habe aber vielleicht die Konstanten
anders definiert), musst du jetzt einen Koeffizienten-
vergleich durchführen. Damit links und rechts wirklich
die gleiche Funktion steht, müssen die Glieder jeden
Grades separat übereinstimmen, also:

     $\ 2=A-P$

     $\ -3=-P-Q$

     $\ 5=-A-Q$  

Damit hast du ein lineares Gleichungssystem für die
gesuchten Konstanten.


LG     Al-Chw.


Bezug
        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mi 06.05.2009
Autor: fred97


> Integrieren Sie
>  
> [mm]\bruch{2x^{2}-3x+5}{x^{3}-x^{2}+x-1}[/mm]
>  Ich habe einige Schritte übersprungen,

Das war nicht gut !


>  Nullstellen etc.
> Aufgabe stimmt soweit!


Tut sie nicht


>  
> [mm]2x^{2}-3x+5[/mm] = [mm]Ax^{2}-A[/mm] - [mm]Px^{2}[/mm] - Px - Qx - Q




Da stimmt was nicht. Setze mal x = -1 ein.



FRED

>  
> Frage, wie komm ich auf die Unbekannten A, P und Q
>  Durch willkürliches einsetzen für x komme ich nicht
> wirklich weiter!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]