www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPartialsummen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Partialsummen
Partialsummen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialsummen: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:42 Di 16.10.2007
Autor: FHTuning

Aufgabe
Das Bildungsgesetz einer Folge lautet [mm] a_{n}=3a_{n-1}+n. [/mm] Bestimmen Sie die ersten sechs Glieder
der Folge sowie [mm] s_{11} (a_{1}=2). [/mm]

Hallo,

die Ersten sechs Glieder zu berechnen ist ja kein Problem. Schwierig wird es nur für mich, wenn ich [mm] s_{11} [/mm] bestimmen soll. Ich kann hierfür ja weder die Formel für arithmetische Reihen, noch für geometrische Reihen nehmen oder??

Als Ergebnis soll rauskommen: [mm] s_{11} [/mm] = 287821

mfg FHTuning

        
Bezug
Partialsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Di 16.10.2007
Autor: leduart

Hallo
Wenn du die ersten paar Glieder ausrechnest, aber als Summe stehen lässt, fällt dir sicher auf, dass man die n also 1,2,3,.. die hinten addiert werden einzeln aufsummieren kann , und was bleibt dann für den vorderen Teil?
Gruss leduart

Bezug
                
Bezug
Partialsummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Di 16.10.2007
Autor: FHTuning

Hallo,

habe jetzt durch aufsummieren aller errechneten Teile tatsächlich das Ergebnis erhalten. Ich glaube allerdings nicht, das du mir das mit deiner Antwort sagen wolltest, oder??

Würde gerne einen rechnerischen Weg zur Lösung kennenlernen (sofern es einen gibt!!)

mfg FHTuning

Bezug
                        
Bezug
Partialsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Mi 17.10.2007
Autor: angela.h.b.

  
> habe jetzt durch aufsummieren aller errechneten Teile
> tatsächlich das Ergebnis erhalten.


> Würde gerne einen rechnerischen Weg zur Lösung kennenlernen
> (sofern es einen gibt!!)

Hallo,

den rechnerischen Weg durchschaust Du am besten, wenn Du Deine ersten Folgenglieder nicht richtig ausrechnest, sondern erstmal hinschrebst, was Du rechnen müßtest:

[mm] a_1=2 [/mm]  =(1+1)

[mm] a_2=1+1+2 [/mm]

[mm] a_3=1+1+2+3 [/mm]

[mm] a_4=1+1+2+3+4 [/mm]

[mm] \vdots [/mm]

[mm] a_n=1+\summe_{i=1}^{n}... [/mm]


Für die Summe solltest Du eine Formel parat haben bzw. schnell erzeugen können - denk an den kleinen Gauß.

Gruß v. Angela




Bezug
                                
Bezug
Partialsummen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 14:19 Mi 17.10.2007
Autor: leduart

Hallo
angela hat die 3 bei [mm] a_{n+1}=3*a_n+n [/mm] übersehen. Aber das Vorgehen bleibt dasselbe:
[mm] a_1=2 [/mm]
[mm] a_2=3*2+2 [/mm]
[mm] a_3=3^2*2+3*2+3=3^3+3 [/mm]
[mm] a_4=3^4+3^2+4 [/mm]
[mm] a_5=3^5+3^2*3+3*4*3+5 [/mm]
usw.
Gruss leduart



Bezug
                                        
Bezug
Partialsummen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:18 Mi 17.10.2007
Autor: Psychopath


>  [mm]a_1=2[/mm]
>  [mm]a_2=3*2+2[/mm]
>  [mm]a_3=3^2*2+3*2+3=3^3+3[/mm]
>  [mm]a_4=3^4+3^2+4[/mm]
>  [mm]a_5=3^5+3^2*3+3*4*3+5[/mm]
>  usw.
>  Gruss leduart

Bei [mm] a_3 [/mm]  stimmen linke und rechte Seite deiner Gleichung nicht überein, wenn ich mich nicht stark irre. Hab es mit dem Taschenrechner probiert, auf der einen Seite stehen 27, auf der anderen 30.

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]