www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:11 Mi 22.04.2009
Autor: stonefree1343

Aufgabe
Bestimmen Sie die partiellen Ableitungen von der Funktion
f(x,y) = [mm] (x^3 [/mm] - sin(x))y + [mm] e^{2y} [/mm]
- [mm] f_x [/mm] (x,y) = ?
- [mm] f_{xx} [/mm] (x,y) = ?
- [mm] f_y [/mm] (x,y) = ?
- [mm] f_{yy} [/mm] (x,y) = ?
- [mm] f_{xy} [/mm] (x,y) = ?

Wie kann ich diese Funktion ableiten? Das Grundprinzip für partielle Ableitungen habe ich verstanden - aber bei solch komplexen Funktionen komme ich nicht weiter.
Habe nur für [mm] f_y [/mm] = [mm] x^3 [/mm] - sin(x) + [mm] e^{2y} \cdot [/mm]  2 (ist das richtig??)
Und für [mm] f_{yy} [/mm] = [mm] 4e^{2y} \cdot [/mm]  ???

Wer kann mir die Schritte, die ich für die Ableitungen dieser Funktion brauche erklären??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mi 22.04.2009
Autor: schachuzipus

Hallo stonefree,

> Bestimmen Sie die partiellen Ableitungen von der Funktion
>  f(x,y) = [mm](x^3[/mm] - sin(x))y + [mm]e^{2y}[/mm]
>  - [mm]f_x[/mm] (x,y) = ?
>  - [mm]f_{xx}[/mm] (x,y) = ?
>  - [mm]f_y[/mm] (x,y) = ?
>  - [mm]f_{yy}[/mm] (x,y) = ?
>  - [mm]f_{xy}[/mm] (x,y) = ?
>  Wie kann ich diese Funktion ableiten? Das Grundprinzip für
> partielle Ableitungen habe ich verstanden - aber bei solch
> komplexen Funktionen komme ich nicht weiter.
>  Habe nur für [mm]f_y[/mm] = [mm]x^3[/mm] - sin(x) + [mm]e^{2y} \cdot[/mm]  2 (ist das
> richtig??)

[daumenhoch]

Aber sowas von richtig!

>  Und für [mm]f_{yy}[/mm] = [mm]4e^{2y} \cdot[/mm]  ??? [ok]

Ja, ist doch gut, du hast das Prinzip doch verstanden.

Für die partielle Ableitung nach x betrachte nun umgekehrt y als Konstante, also wie eine Zahl ...


Ich bin zuversichtlich, dass du das hinbekommst, die partielle Ableitung nach y war ja schon sehr gut, außerdem hast du im anderen thread schon Anregungen bekommen!

Probier's einfach mal, kann ja nix kaputt gehen ;-)

Wir kontrollieren gerne.

Kein Mathe ohne Versuche ... ;-)

>  
> Wer kann mir die Schritte, die ich für die Ableitungen
> dieser Funktion brauche erklären??
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]