www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationPartielle Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Partielle Ableitungen
Partielle Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Mi 01.09.2010
Autor: monstre123

Aufgabe
ges.: partielle Ableitung 1.Ordnung der Funktionen

d) [mm] g(x,t)=ln(\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}}) [/mm]

h) [mm] g(x,t)=\bruch{2x-t}{x+2t} [/mm]

k) [mm] f(x,y)=arcsin(\bruch{y}{x}) [/mm]

m) h(x,t)=ln*sin(x-2t)

n) [mm] g(x,y)=sin^{2}(x+y)-sin^{2}x-sin^{2}y [/mm]

Hallo,

so hier meine Arbeit und Fragen bisher:

d) [mm] g_{x}=\bruch{1}{\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}}}*(-\bruch{2}{3\wurzel[3]{x^{5}}}) [/mm]  ,  denn [mm] (\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}}) [/mm] ' = [mm] 1*x^{\bruch{1}{3}-1} [/mm] - [mm] 1*t^{\bruch{1}{3}-1} [/mm] = [mm] x^{-\bruch{2}{3}}-t^{-\bruch{2}{3}}=-\bruch{2}{3}x^{-\bruch{2}{3}-1}+\bruch{2}{3}t^{-\bruch{2}{3}-1}=-\bruch{2}{3}x^{-\bruch{5}{3}}+\bruch{2}{3}t^{-\bruch{5}{3}}=-\bruch{2}{3\wurzel[3]{x^{5}}}+\bruch{2}{3\wurzel[3]{t^{5}}} [/mm] --> daraus nur den x-teil entnehmen und mit (ln(x))'= [mm] \bruch{1}{x} [/mm]

korrekt bishe? wie kann ich das noch verschönern?


h) bei der g(x,t) habe zwar [mm] g_{x} [/mm] jedoch gibts probleme beim [mm] g_{t} [/mm]

[mm] g_{x}=\bruch{5t}{(x+2t)^{2}} [/mm]

[mm] g_{t}=\bruch{(-1)*(x+2t)-(2x-t)*(2)}{(x+2t)^{2}}=\bruch{-x-2t-4x+2t}{(x+2t)^{2}}=\bruch{-5x}{(x+2t)^{2}} [/mm]
ich habe zwar das heraus bekommen, jedoch sagen die Lösungen: [mm] g_{t}=\bruch{-5}{(x+2t)^{2}} [/mm] , also ohne x im Zähler

k) [mm] f_{x}=\bruch{1}{\wurzel{1-(y/x)^{2}}}*(-\bruch{y}{x^{2}})=-\bruch{y}{x^{2}\wurzel{1-(y/x)^{2}}}= -\bruch{y}{x^{2}\wurzel{1-\bruch{y^{2}}{x^{2}}}}=\bruch{y}{x^{2}*(1-y/x)}=-\bruch{y}{x^{2}-yx} [/mm]
und die Lösung des Buches lautet: [mm] f_{x}=-\bruch{|x|y}{x^{2}\wurzel{x^{2}-y^{2}}} [/mm]

was haben die betragsstriche hier zu bedeuten und wie komme ich mit meinen ergebnis zum diesem ergebnis?


m) [mm] h_{x}={1}{sin(x-2t)}(-cos(x-2t)*1)=-\bruch{cos(x-2t)}{sin(x-2t)} [/mm]

Lösung vom Buch: [mm] h_{x}=cot(x-2t) [/mm]

ich denke mal, dass [mm] \bruch{cosx}{sinx}=cotx [/mm] ist oder? wenn ja würde ich auch auf das ergebnis kommen, aber mit dem minusvorzeichen.


n) [mm] g(x,y)=sin^{2}(x+y)-sin^{2}x-sin^{2}y [/mm]
hier brauche ich einen ansatz? könnte es so sein, wenn wir nur den Term [mm] (sin^{2}(x+y))'=2*cos(x+y)*1=2cos(x+y) [/mm]  betrachten?


thx.

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 01.09.2010
Autor: M.Rex

Hallo


> ges.: partielle Ableitung 1.Ordnung der Funktionen
>  
> d)
> [mm]g(x,t)=ln(\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}})[/mm]
>
> h) [mm]g(x,t)=\bruch{2x-t}{x+2t}[/mm]
>  
> k) [mm]f(x,y)=arcsin(\bruch{y}{x})[/mm]
>  
> m) h(x,t)=ln*sin(x-2t)

Was genau meinst du. Die Notation von h macht so keinen Sinn.

>  
> n) [mm]g(x,y)=sin^{2}(x+y)-sin^{2}x-sin^{2}y[/mm]
>  Hallo,
>  
> so hier meine Arbeit und Fragen bisher:
>  
> d)
> [mm]g_{x}=\bruch{1}{\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}}}*(-\bruch{2}{3\wurzel[3]{x^{5}}})[/mm]

Das Ergebnis stimmt....

>  ,  denn
> [mm](\bruch{1}{\wurzel[3]{x}}-\bruch{1}{\wurzel[3]{t}})[/mm] ' =
> [mm]1*x^{\bruch{1}{3}-1}[/mm] - [mm]1*t^{\bruch{1}{3}-1}[/mm] =
> [mm]x^{-\bruch{2}{3}}-t^{-\bruch{2}{3}}=-\bruch{2}{3}x^{-\bruch{2}{3}-1}+\bruch{2}{3}t^{-\bruch{2}{3}-1}=-\bruch{2}{3}x^{-\bruch{5}{3}}+\bruch{2}{3}t^{-\bruch{5}{3}}=-\bruch{2}{3\wurzel[3]{x^{5}}}+\bruch{2}{3\wurzel[3]{t^{5}}}[/mm]
> --> daraus nur den x-teil entnehmen und mit (ln(x))'=
> [mm]\bruch{1}{x}[/mm]
>  
> korrekt bishe? wie kann ich das noch verschönern?

...der Weg dahin scheint mir etwas wirr. Du brauchst hier lediglich die Kettenregel. Versuche mal, den Doppelbruch noch "loszuwerden".

>  
>
> h) bei der g(x,t) habe zwar [mm]g_{x}[/mm] jedoch gibts probleme
> beim [mm]g_{t}[/mm]
>  
> [mm]g_{x}=\bruch{5t}{(x+2t)^{2}}[/mm]
>  
> [mm]g_{t}=\bruch{(-1)*(x+2t)-(2x-t)*(2)}{(x+2t)^{2}}=\bruch{-x-2t-4x+2t}{(x+2t)^{2}}=\bruch{-5x}{(x+2t)^{2}}[/mm]
>  ich habe zwar das heraus bekommen, jedoch sagen die
> Lösungen: [mm]g_{t}=\bruch{-5}{(x+2t)^{2}}[/mm] , also ohne x im
> Zähler

Du hast: $ [mm] g_{x}=\bruch{\overbrace{2}^{u'}\overbrace{(x+2t)}^{v}-\overbrace{1}^{v'}\overbrace{(2x-t)}^{u}}{\underbrace{(x+2t)^{2}}_{v^{2}}} [/mm]

>  
> k)

> [mm]f_{x}=\bruch{1}{\wurzel{1-(y/x)^{2}}}*(-\bruch{y}{x^{2}})=-\bruch{y}{x^{2}\wurzel{1-(y/x)^{2}}}= -\bruch{y}{x^{2}\wurzel{1-\bruch{y^{2}}{x^{2}}}}=\bruch{y}{x^{2}*(1-y/x)}=-\bruch{y}{x^{2}-yx}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Der Schritt von $ -\bruch{y}{x^{2}\wurzel{1-\bruch{y^{2}}{x^{2}}}} $ an ist falsch.
$ \wurzel{1-\bruch{y^{2}}{x^{2}}\ne1-\bruch{y}{x} $


>  
> und die Lösung des Buches lautet:
> [mm]f_{x}=-\bruch{|x|y}{x^{2}\wurzel{x^{2}-y^{2}}}[/mm]
>  
> was haben die betragsstriche hier zu bedeuten und wie komme
> ich mit meinen ergebnis zum diesem ergebnis?

Das wirst du sehen, wenn du korrekt unformst.

>  
>
> m)
> [mm]h_{x}={1}{sin(x-2t)}(-cos(x-2t)*1)=-\bruch{cos(x-2t)}{sin(x-2t)}[/mm]
>  
> Lösung vom Buch: [mm]h_{x}=cot(x-2t)[/mm]
>  
> ich denke mal, dass [mm]\bruch{cosx}{sinx}=cotx[/mm] ist oder?

Yep. Aber mehr Tipps erst, wenn die Funktion klarer ist. (s.o). [mm] \ln\red{*}\Box [/mm] macht keinen Sinn.

> wenn  ja würde ich auch auf das ergebnis kommen, aber mit dem
> minusvorzeichen.
>  
>
> n) [mm]g(x,y)=sin^{2}(x+y)-sin^{2}x-sin^{2}y[/mm]
>  hier brauche ich einen ansatz? könnte es so sein, wenn
> wir nur den Term [mm](sin^{2}(x+y))'=2*cos(x+y)*1=2cos(x+y)[/mm]  
> betrachten?

Nutze die Summenregel, und für die einzelnen Summanden die Kettenregel.

>  
>
> thx.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]