Partielle Diffbarkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:20 Mi 30.07.2014 | Autor: | rollroll |
Aufgabe | Sei [mm] f:IR^n [/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei [mm] g:IR^n [/mm] --> IR stetig in 0. Zeige, dass [mm] h:IR^n-->IR, [/mm] h(x)=f(x)g(x) in 0 partiell diffbar ist und berechne grad h(0). |
Hallo,
es ist im Nullpunkt: [mm] \limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h} [/mm] * [mm] \limes_{h\rightarrow0} g(he_i) [/mm] = [mm] \bruch{\partial f}{\partial x_i}(0) [/mm] * [mm] \limes_{h\rightarrow0} g(he_i) [/mm] und der rechte Faktor existiert, weil g stetig in 0 ist, stimmt das so? Dann wäre ja gradh(0)=0
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:19 Do 31.07.2014 | Autor: | Marcel |
Hallo,
> Sei [mm]f:IR^n[/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei
> [mm]g:IR^n[/mm] --> IR stetig in 0. Zeige, dass [mm]h:IR^n-->IR,[/mm]
> h(x)=f(x)g(x) in 0 partiell diffbar ist und berechne grad
> h(0).
> Hallo,
>
> es ist im Nullpunkt: [mm]\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h}[/mm] * [mm]\limes_{h\rightarrow0} g(he_i)[/mm]
Warum schreibst Du immer [mm] $x\,$ [/mm] für [mm] $x=0\,,$ [/mm] anstatt dort direkt [mm] $0\,$ [/mm] zu schreiben?
Also: Anstatt zu sagen, es ist $x=0 [mm] \in \IR^n$ [/mm] und dann
[mm] $\frac{\partial h(x)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}=...\,,$
[/mm]
schreibe doch direkt
[mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(0+he_i)-h(0)}{h}$
[/mm]
Wobei es hier auch einen formalen "Lapsus" gibt. Wenn Du die Funktion [mm] $h\,$
[/mm]
schon hast, dann solltest Du nicht mehr [mm] $h\,$ [/mm] als Variablenbezeichnung für
eine reelle Zahl (die gegen [mm] $0\,$ [/mm] laufen gelassen wird) nehmen. Schau'
mal, wie ich das unten schreibe - wenn Du dort das rote [mm] $t\,$ [/mm] durch [mm] $h\,$ [/mm] ersetzt,
dann sieht mindestens der Term nach dem ersten Gleichheitszeichen
merkwürdig aus. Zumal man auch fragen könnte, wie man denn die
Funktion [mm] $h\,$ [/mm] gegen Null laufen lassen solle?
> = [mm]\bruch{\partial f}{\partial x_i}(0)[/mm] * [mm]\limes_{h\rightarrow0} g(he_i)[/mm] und der rechte Faktor
> existiert, weil g stetig in 0 ist, stimmt das so?
Ich rechne mal selbst
[mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{\red{t}\rightarrow0} \bruch{h(0+\red{t}e_i)-h(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)*g(0+\red{t}*e_i)-f(0)*g(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)}{\red{t}}*\lim_{\red{t} \to 0}g(\red{t}*e_i)=\frac{\partial f(0)}{\partial x_i}*g(0)=g(0)*\frac{\partial f(0)}{\partial x_i}$
[/mm]
gilt für alle $i [mm] \in \{1,...,n\}\,.$
[/mm]
Du hast also richtig gerechnet, Du solltest vielleicht bzgl.
[mm] $\lim_{h \to 0}g(h*e_i)$
[/mm]
nur noch ergänzen, dass wir nicht nur die Existenz, sondern sogar den
Wert dieses Grenzwertes kennen: Es ist [mm] $g(0)\,$ [/mm] (mit $0 [mm] \in \IR^n$).
[/mm]
> Dann wäre ja gradh(0)=0
Nein, es ist doch
[mm] $\nabla h(0)=g(0)*\nabla f(0)\,.$
[/mm]
Etwa im Falle [mm] $g(0)=0\,$ [/mm] (das wissen wir aber nicht - es war nur [mm] $f(0)=0\,$ [/mm] gesagt!)
würde Deine Folgerung stimmen!
P.S. Schreibe doch bitte [mm] $\IR^n$ [/mm] und [mm] $\to$ [/mm] etc. mit dem Formeleditor. Es ist einfach
sehr viel angenehmer zu lesen. Und ich denke eigentlich, dass Du auch
schon lange genug dabei bist, um zu wissen, wo man die Befehle dazu
findet (ansonsten: es sind i.W. Latex-Befehle) bzw. wie man sie sich selbst
erarbeiten kann (auf Formeln klicken oder Mauszeiger drüberhalten oder ...).
Wenn es unbedingt nötig ist, kann ich Dir auch hier nochmal Links dazu
schreiben.
Gruß,
Marcel
|
|
|
|