www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartielle Integration log
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Partielle Integration log
Partielle Integration log < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration log: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 19.01.2012
Autor: ella87

Aufgabe
Bestimmen Sie eine Stammfunktion von [mm]f: \IR \to \IR[/mm] mit [mm[f(x)=log (x)[/mm] mit Hilfe partieller Integration.

ich bin nur etwas iritiert, weil ich im Internet eine andere Lösung gefunden habe als meine und ich gerne wissen würde, warum das so ist.

[mm]f(x)=log (x)[/mm] ich setzte also [mm]f'(x)=1[/mm], [mm]f(x)=x[/mm], [mm]g(x)= log (x)[/mm] und [mm]g'(x)=\bruch{1}{x ln(a)}[/mm]

zumindest steht diese Ableitung in meiner Formelsammlung, aber hier (etwa auf Höhe 2/3 der Seite)

http://www.mathematik.de/ger/fragenantworten/erstehilfe/integration/integration.html

verwendet man [mm]g'(x)=\bruch{1}{x}[/mm]

kann ich einfach ignorieren, dass der log eine Basis [mm]\not= e[/mm] hat?

meine Rechnung sieht jedenfalls so aus:

[mm]\integral_{ }^{ }{log(x) dx}}=\integral_{ }^{ }{log_a (x) dx}}= x*log_a (x) -\integral_{ }^{ }{x*\bruch{1}{x*ln(a)} dx}}= x*log_a (x) -\integral_{ }^{ }{\bruch{1}{ln(a)} dx}}[/mm]
und dann nochmal partiell integrieren mit [mm]u'=\bruch{1}{1*ln(a)}[/mm], [mm]u=log_a (x)[/mm], [mm] v=1[/mm] und [mm]v'=0[/mm]

[mm]=x*log_a (x) - log_a (x) -\integral_{ }^{ }{log_a (x)*0 dx}} = log_a (x) (x-1)[/mm]

warum ist das nicht so??

        
Bezug
Partielle Integration log: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 19.01.2012
Autor: MathePower

Hallo ella87,

> Bestimmen Sie eine Stammfunktion von [mm]f: \IR \to \IR[/mm] mit
> [mm[f(x)=log (x)[/mm] mit Hilfe partieller Integration.
>  ich bin nur etwas iritiert, weil ich im Internet eine
> andere Lösung gefunden habe als meine und ich gerne wissen
> würde, warum das so ist.
>  
> [mm]f(x)=log (x)[/mm] ich setzte also [mm]f'(x)=1[/mm], [mm]f(x)=x[/mm], [mm]g(x)= log (x)[/mm]
> und [mm]g'(x)=\bruch{1}{x ln(a)}[/mm]
>  
> zumindest steht diese Ableitung in meiner Formelsammlung,
> aber hier (etwa auf Höhe 2/3 der Seite)
>  
> http://www.mathematik.de/ger/fragenantworten/erstehilfe/integration/integration.html
>  
> verwendet man [mm]g'(x)=\bruch{1}{x}[/mm]
>  
> kann ich einfach ignorieren, dass der log eine Basis [mm]\not= e[/mm]
> hat?
>  
> meine Rechnung sieht jedenfalls so aus:
>  
> [mm]\integral_{ }^{ }{log(x) dx}}=\integral_{ }^{ }{log_a (x) dx}}= x*log_a (x) -\integral_{ }^{ }{x*\bruch{1}{x*ln(a)} dx}}= x*log_a (x) -\integral_{ }^{ }{\bruch{1}{ln(a)} dx}}[/mm]
>  
> und dann nochmal partiell integrieren mit
> [mm]u'=\bruch{1}{1*ln(a)}[/mm], [mm]u=log_a (x)[/mm], [mm]v=1[/mm] und [mm]v'=0[/mm]
>  
> [mm]=x*log_a (x) - log_a (x) -\integral_{ }^{ }{log_a (x)*0 dx}} = log_a (x) (x-1)[/mm]
>  
> warum ist das nicht so??


"log" ist doch auf dieser Seite, die Umkehrfunktion der Exponentialfunktion [mm]e^{x}[/mm]

Siehe hier: [mm]a^{x}=e^{log(a)*x}=e^{x*log(a)}[/mm]


Gruss
MathePower

Bezug
                
Bezug
Partielle Integration log: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Do 19.01.2012
Autor: ella87

ah, okay.
aber das ist i.A. doch ln oder nicht? ist meine Lösung denn korrekt?

Bezug
                        
Bezug
Partielle Integration log: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Do 19.01.2012
Autor: MathePower

Hallo ella87,

> ah, okay.
> aber das ist i.A. doch ln oder nicht? ist meine Lösung


Ja, üblicherweise ist das der natürliche Logarirghmus "ln".


> denn korrekt?


Deine Lösung ist nur korrekt, wenn a=e.

Dabei gehe ich von [mm]\integral_{ }^{ }{log(x) dx}}=\integral_{ }^{ }{log_a (x) dx}}[/mm] aus.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]