www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPartikuläre Lösung der DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Partikuläre Lösung der DGL
Partikuläre Lösung der DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partikuläre Lösung der DGL: Physik Schwingung Feder
Status: (Frage) beantwortet Status 
Datum: 17:40 So 19.02.2012
Autor: murmel

Hallo,

ich habe folgende Differentialgleichung (DGL) gegeben:


[mm] \ddot z + 4 \omega_0 \, \dot z + 3 \, \omega_0^2 \, z + g = 0 [/mm]

Für den homogenen Lösungsteil dieser inhomogenen DGL

habe ich (hoffentlich richtig) ermittelt:

[mm] z_{h} \left( t \right) = A\exp \left( - \omega_0 \, t \right) + B\exp \left( - 3 \omega_0 \, t \right) [/mm]

Für den partikulären Anteil habe ich keinen Lösungsalgorithmus parat.

Ich vermute, dass die zweite Ableitung Null sein muss.

[mm] 4 \omega_0 \dot z + 3 \omega_0^2 \, z = -g [/mm]


Der Lösungsansatz hat physikalischen Ursprung (Federschwinger: eine Masse ist zwischen zwei Federn eingespannt die wiederum an Boden und Decke befestigt sind. Das System steht unter dem Einfluss der Schwerkraft und Reibungskraft.)


Für einen Tipp wäre ich euch sehr dankbar, wie man den partikulären Teil lösen kann.

        
Bezug
Partikuläre Lösung der DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 19.02.2012
Autor: donquijote


> Hallo,
>
> ich habe folgende Differentialgleichung (DGL) gegeben:
>  
>
> [mm]\ddot z + 4 \omega_0 \, \dot z + 3 \, \omega_0^2 \, z + g = 0 [/mm]
>  
> Für den homogenen Lösungsteil dieser inhomogenen DGL
>  
> habe ich (hoffentlich richtig) ermittelt:
>  
> [mm]z_{h} \left( t \right) = A\exp \left( - \omega_0 \, t \right) + B\exp \left( - 3 \omega_0 \, t \right) [/mm]

richtig

>  
> Für den partikulären Anteil habe ich keinen
> Lösungsalgorithmus parat.
>  
> Ich vermute, dass die zweite Ableitung Null sein muss.
>  
> [mm]4 \omega_0 \dot z + 3 \omega_0^2 \, z = -g[/mm]

Ich gehe mal davon aus, dass es sich bei g um eine Konstante handelt. In diesem Fall hat die DGL auch eine kontsante partikuläre Lösung, für die dann [mm] \ddot{z}=\dot{z}=0 [/mm] gilt und somit
3 [mm] \, \omega_0^2 \, z=-g\Leftrightarrow z=\frac{-g}{3 \, \omega_0^2} [/mm]

>  
>
> Der Lösungsansatz hat physikalischen Ursprung
> (Federschwinger: eine Masse ist zwischen zwei Federn
> eingespannt die wiederum an Boden und Decke befestigt sind.
> Das System steht unter dem Einfluss der Schwerkraft und
> Reibungskraft.)
>  
>
> Für einen Tipp wäre ich euch sehr dankbar, wie man den
> partikulären Teil lösen kann.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]