www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPermutationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Permutationen
Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Do 24.04.2008
Autor: Basti51

Aufgabe
Die Aufgabe bezieht sich auf die Permutationsgruppe [mm] $S_4$ [/mm]  der Menge {1,2,3,4}:

Auf wieviel verschiedene Arten lässt sich die Permutation (143) als Produkt von drei bzw. vier elementaren Transpositionen, d. h. Permutationen der Form (i,i+1), i=1,2,3, schreiben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Mir ist die Aufgabenstellung klar, habe auch schon drei Produkte aus jeweils vier Transpositionen gefunden. Aber mir will nach langem tüffteln einfach lein Produkt aus drei Transpositionen einfallen. Könnt ihr mir bitte einen kleinen Tip geben? Wieviele Möglichkeiten gibt es denn eigentlich?
Hier schon mal ein Produkt:

(12) (23) (12) (24) = (143)

Ist das soweit schonmal richtig? oder muss ich umstellen da es sich vielleicht um Kompositionen handelt?

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 24.04.2008
Autor: Stefan_K

Hallo Basti,

das Signum der Permutation (143) ist 1, während das Signum einer Transposition gleich -1 ist. Bedenke, was sich als Signum eines Produkts dreier Transpositionen ergibt.

Viele Grüße,

Stefan


Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 24.04.2008
Autor: Basti51

Danke für den schnellen Tip.
Leider wusste ich bis gerade nicht was ein Signum ist und was Fehlstände sind. Habe mich aber kurz eingelesen.

Mein Ansatz: Es kann kein Produkt aus drei Transpositionen welches eine gerade Anzahl von Fehlständen hat geben, da die Transp. alle signum -1 haben. Da 3 mal ungerade = ungerade?
Ich hoffe ich hab das jetzt verstanden...

Gibt es einen Trick, alle Produkte aus vier transp. zu erhalten oder kann man nur rumpropieren?

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Do 24.04.2008
Autor: Stefan_K

Ja, es ist richtig begründet, dass es kein solches Produkt dreier Transpositionen geben kann. Bei 4 Transpositionen würde ich systematisch vorgehen, so viele gibt es ja nicht.

Viele Grüße,

Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]